3,864
Views
50
CrossRef citations to date
0
Altmetric
REVIEW

The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

&
Pages 1568-1585 | Received 30 Jun 2014, Accepted 05 Nov 2015, Published online: 26 Feb 2015

References

  • Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38; PMID:14715921; http://dx.doi.org/10.1093/nar/gkh185
  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 2011; 39:D195-201; PMID:21071406; http://dx.doi.org/10.1093/nar/gkq1028
  • Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Prot 2012; 75:3434-49; PMID:22348820; http://dx.doi.org/10.1016/j.jprot.2012.01.032
  • Hofstadler SA, Sannes-Lowery KA, Hannis JC. Analysis of nucleic acids by FTICR MS. Mass Spectrom Rev 2005; 24:265-85; PMID:15389854; http://dx.doi.org/10.1002/mas.20016
  • Limbach PA. Indirect mass spectrometric methods for characterizing and sequencing oligonucleotides. Mass Spectrom Rev 1996; 15:297-336; http://dx.doi.org/10.1002/(SICI)1098-2787(1996)15:5%3c297::AID-MAS2%3e3.0.CO;2-D
  • Nordhoff E, Kirpekar F, Roepstorff P. Mass spectrometry of nucleic acids. Mass Spectrom Rev 1996; 15:67-138; http://dx.doi.org/10.1002/(SICI)1098-2787(1996)15:2%3c67::AID-MAS1%3e3.0.CO;2-8
  • McCloskey JA. Structural characterization of natural nucleosides by mass spectrometry. Acc Chem Res 1991; 24:81-8; http://dx.doi.org/10.1021/ar00003a004
  • McCloskey JA, Nishimura S. Modified nucleosides in transfer RNA. Acc Chem Res 1997; 10:403-410. http://dx.doi.org/10.1021/ar50119a004
  • Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 2005; 105:1869-915; PMID:15884792; http://dx.doi.org/10.1021/cr030040w
  • McCloskey J, Whitehill A, Rozenski J, Qiu F, Crain P. New techniques for the rapid characterization of oligonucleotides by mass spectrometry. Nucleosides & Nucleotides 1999; 18:1549-53; PMID:10474232; http://dx.doi.org/10.1080/07328319908044782
  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 2013; 41:D262-7; PMID:23118484; http://dx.doi.org/10.1093/nar/gks1007
  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 2011; 39:D195-D201; PMID:21071406; http://dx.doi.org/10.1093/nar/gkq1028
  • Krog JS, Espanol Y, Giessing AM, Dziergowska A, Malkiewicz A, de Pouplana LR, Kirpekar F. 3-(3-amino-3-carboxypropyl)-5,6-dihydrouridine is one of two novel post-transcriptional modifications in tRNALys(UUU) from Trypanosoma brucei. FEBS J 2011; 278:4782-96; PMID:22040320; http://dx.doi.org/10.1111/j.1742-4658.2011.08379.x
  • Mandal D, Kohrer C, Su D, Russell SP, Krivos K, Castleberry CM, Blum P, Limbach PA, Soll D, RajBhandary UL. Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine. Proc Natl Acad Sci U S A 2010; 107:2872-7; PMID:20133752; http://dx.doi.org/10.1073/pnas.0914869107
  • Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T, Wada T, Suzuki T, Suzuki T. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 2010; 6:277-282. http://dx.doi.org/10.1038/nchembio.323
  • Mandal D, Kohrer C, Su D, Babu IR, Chan CT, Liu Y, Soll D, Blum P, Kuwahara M, Dedon PC, et al. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. RNA 2014; 20:177-88; PMID:24344322; http://dx.doi.org/10.1261/rna.042358.113
  • Chen P, Crain PF, Näsvall SJ, Pomerantz SC, Björk GR. A 'gain of function' mutation in a protein mediates production of novel modified nucleosides. EMBO J 2005; 24:1842-51; PMID:15861125; http://dx.doi.org/10.1038/sj.emboj.7600666
  • Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR. Discovery and biological characterization of geranylated RNA in bacteria. Nat Chem Biol 2012; 8:913-9; PMID:22983156
  • Helm M, Alfonzo JD. Posttranscriptional RNA Modifications: Playing metabolic games in a cell's chemical legoland. Chem Biol 2014; 21:174-85; PMID:24315934; http://dx.doi.org/10.1016/j.chembiol.2013.10.015
  • Miyauchi K, Kimura S, Suzuki T. A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat Chem Biol 2013; 9:105-11; PMID:23242255; http://dx.doi.org/10.1038/nchembio.1137
  • Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010; 6:e1001247; PMID:21187895; http://dx.doi.org/10.1371/journal.pgen.1001247
  • Su D, Chan CTY, Gu C, Lim KS, Chionh YH, McBee ME, Russell BS, Babu IR, Begley TJ, Dedon PC. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc 2014; 9:828-41; http://dx.doi.org/10.1038/nprot.2014.047
  • Dedon PC, Begley TJ. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem Res Toxicol 2014; 27:330-7; PMID:24422464; http://dx.doi.org/10.1021/tx400438d
  • Dalluge JJ, Hashizume T, McCloskey JA. Quantitative measurement of dihydrouridine in RNA using isotope dilution liquid chromatography-mass spectrometry (LC/MS). Nucleic Acids Res 1996; 24:3242-5; PMID:8774907; http://dx.doi.org/10.1093/nar/24.16.3242
  • Brandmayr C, Wagner M, Bruckl T, Globisch D, Pearson D, Kneuttinger AC, Reiter V, Hienzsch A, Koch S, Thoma I, et al. Isotope-based analysis of modified tRNA nucleosides correlates modification density with translational efficiency. Angewandte Chemie 2012; 51:11162-5; PMID:23037940; http://dx.doi.org/10.1002/anie.201203769
  • Kellner S, Neumann J, Rosenkranz D, Lebedeva S, Ketting RF, Zischler H, Schneider D, Helm M. Profiling of RNA modifications by multiplexed stable isotope labelling. Chem Commun 2014; 50:3516-8; PMID:24567952; http://dx.doi.org/10.1039/c3cc49114e
  • Frickenschmidt A, Fröhlich H, Bullinger D, Zell A, Laufer S, Gleiter CH, Liebich H, Kammerer B. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers 2008; 13:435-49; PMID:18484357; http://dx.doi.org/10.1080/13547500802012858
  • Quinn R, Basanta-Sanchez M, Rose RE, Fabris D. Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition. J Mass Spectrom 2013; 48:703-12; PMID:23722961; http://dx.doi.org/10.1002/jms.3207
  • Covey TR, Bonner RF, Shushan BI, Henion J. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom 1988; 2:249-56; PMID:2577836; http://dx.doi.org/10.1002/rcm.1290021111
  • Stults JT, Marsters JC, Carr SA. Improved Electrospray Ionization of Synthetic Oligodeoxynucleotides. Rapid Commun Mass Spectrom 1991; 5:359-63; http://dx.doi.org/10.1002/rcm.1290050806
  • Okafo G, Elder D, Webb M, eds. Analysis of oligonucleotides and their related substances. Hertfortshire, UK: ILM Publications, 2013.
  • Kullolli M, Knouf E, Arampatzidou M, Tewari M, Pitteri SJ. Intact MicroRNA analysis using high resolution mass spectrometry. J Am Soc Mass Spectrom 2014; 25:80-7; PMID:24174127; http://dx.doi.org/10.1007/s13361-013-0759-x
  • Beverly MB. Applications of mass spectrometry to the study of siRNA. Mass Spectrom Rev 2010; PMID:20201110
  • Bonilla J, Srivatsa G, eds. Handbook of Analysis of Oligonucleotides and Related Products. Boca Raton, FL USA: CRC Press, 2011.
  • Banoub JH, Limbach PA, eds. Mass Spectrometry of Nucleosides and Nucleic Acids. Boca Raton, FL USA: CRC Press, 2010.
  • Sanger F, Brownlee GG, Barrell BG. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 1965; 13:373-98; PMID:5325727; http://dx.doi.org/10.1016/S0022-2836(65)80104-8
  • Kowalak JA, Pomerantz SC, Crain PF, McCloskey JA. A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucl Acids Res 1993; 21:4577-85; PMID:8233793; http://dx.doi.org/10.1093/nar/21.19.4577
  • Douthwaite S, Kirpekar F. Identifying modifications in RNA by MALDI mass spectrometry. Methods Enzymol 2007; 425:3-20; PMID:17673077
  • Guymon R, Pomerantz SC, Crain PF, McCloskey JA. Influence of phylogeny on posttranscriptional modification of rRNA in thermophilic prokaryotes: the complete modification map of 16S rRNA of Thermus thermophilus. Biochemistry 2006; 45:4888-99; PMID:16605256; http://dx.doi.org/10.1021/bi052579p
  • Guymon R, Pomerantz SC, Ison JN, Crain PF, McCloskey JA. Post-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine. RNA 2007; 13:396-403; PMID:17255199; http://dx.doi.org/10.1261/rna.361607
  • Schürch S, Bernal-Méndez E, Leumann CJ. Electrospray tandem mass spectrometry of mixed-sequence RNA/DNA oligonucleotides. J Am Soc Mass Spectrom 2002; 13:936-45; PMID:12216734; http://dx.doi.org/10.1016/S1044-0305(02)00413-0
  • Tromp JM, Schürch S. Gas-phase dissociation of oligoribonucleotides and their analogs studied by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 2005; 16:1262-8; PMID:15978835; http://dx.doi.org/10.1016/j.jasms.2005.03.024
  • Monn STM, Schürch S. New aspects of the fragmentation mechanisms of unmodified and methylphosphonate-modified oligonucleotides. J Am Soc Mass Spectrom 2007; 18:984-90; PMID:17383194; http://dx.doi.org/10.1016/j.jasms.2007.02.006
  • Nyakas A, Stucki SR, Schürch S. Tandem mass spectrometry of modified and platinated oligoribonucleotides. J Am Soc Mass Spectrom 2011; 22:875-87; PMID:21472522; http://dx.doi.org/10.1007/s13361-011-0106-z
  • Steyaert J. A decade of protein engineering on ribonuclease T1. Atomic dissection of the enzyme-substrate interactions. Eur J Biochem 1997; 247:1-11; PMID:9249002; http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00001.x
  • Zallot R, Brochier-Armanet C, Gaston KW, Forouhar F, Limbach PA, Hunt JF, de Crecy-Lagard V. Plant, Animal, and Fungal Micronutrient Queuosine Is Salvaged by Members of the DUF2419 Protein Family. ACS Chem Biol 2014; 9:1812-1825. doi:10.1021/cb500278k
  • Huang TY, Kharlamova A, Liu J, McLuckey SA. Ion trap collision-induced dissociation of multiply deprotonated RNA: c/y-ions versus (a-B)/w-ions. J Am Soc Mass Spectrom 2008; 19:1832-40; PMID:18799321; http://dx.doi.org/10.1016/j.jasms.2008.08.009
  • Wu J, McLuckey SA. Gas-phase fragmentation of oligonucleotide ions. Int J Mass Spectrom 2004; 237:197-241; http://dx.doi.org/10.1016/j.ijms.2004.06.014
  • Suzuki T. Chaplet column chromatography: isolation of a large set of individual RNAs in a single step. Methods Enzymol 2007; 425:231-9; PMID:17673086; http://dx.doi.org/10.1016/S0076-6879(07)25010-4
  • Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 2014; 42:7346-57; PMID:24831542; http://dx.doi.org/10.1093/nar/gku390
  • Kowalak JA, Bruenger E, Crain PF, McCloskey JA. Identities and phylogenetic comparisons of posttranscriptional modifications in 16 S ribosomal RNA from Haloferax volcanii. J Biol Chem 2000; 275:24484-9; PMID:10818097; http://dx.doi.org/10.1074/jbc.M002153200
  • Emmerechts G, Barbé S, Herdewijn P, Anné J, Rozenski J. Post-transcriptional modification mapping in the Clostridium acetobutylicum 16S rRNA by mass spectrometry and reverse transcriptase assays. Nucleic Acids Res 2007; 35:3494-503; PMID:17478509; http://dx.doi.org/10.1093/nar/gkm248
  • Emmerechts G, Maes L, Herdewijn P, Anné J, Rozenski J. Characterization of the posttranscriptional modifications in Legionella pneumophila small-subunit ribosomal RNA. Chem Biodivers 2008; 5:2640-53; PMID:19089822; http://dx.doi.org/10.1002/cbdv.200890218
  • Hansen MA, Kirpekar F, Ritterbusch W, Vester B. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. RNA 2002; 8:202-13; PMID:11911366; http://dx.doi.org/10.1017/S1355838202013365
  • Mengel-Jørgensen J, Jensen SS, Rasmussen A, Poehlsgaard J, Iversen JJL, Kirpekar F. Modifications in thermus thermophilus 23 S ribosomal RNA are centered in regions of RNA-RNA contact. J Biol Chem 2006; 281:22108-17; PMID:16731530; http://dx.doi.org/10.1074/jbc.M600377200
  • Kirpekar F, Hansen LH, Rasmussen A, Poehlsgaard J, Vester B. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. J Mol Biol 2005; 348:563-73; PMID:15826654; http://dx.doi.org/10.1016/j.jmb.2005.03.009
  • Kirpekar F, Douthwaite S, Roepstorff P. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA 2000; 6:296-306; PMID:10688367; http://dx.doi.org/10.1017/S1355838200992148
  • McCloskey JA, Rozenski J. The small subunit rRNA modification database. Nucleic Acids Res 2005; 33:D135-8; PMID:15608163; http://dx.doi.org/10.1093/nar/gki015
  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311:395-8; PMID:16424344; http://dx.doi.org/10.1126/science.1120976
  • Tovy A, Siman Tov R, Gaentzsch R, Helm M, Ankri S. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathog 2010; 6:e1000775; PMID:20174608; http://dx.doi.org/10.1371/journal.ppat.1000775
  • Becker M, Muller S, Nellen W, Jurkowski TP, Jeltsch A, Ehrenhofer-Murray AE. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucl Acids Res 2012; 40:11648-58; PMID:23074192; http://dx.doi.org/10.1093/nar/gks956
  • Muller S, Windhof IM, Maximov V, Jurkowski T, Jeltsch A, Forstner KU, Sharma CM, Graf R, Nellen W. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucl Acids Res 2013; 41:8615-27; PMID:23877245; http://dx.doi.org/10.1093/nar/gkt634
  • Shanmugam R, Aklujkar M, Schafer M, Reinhardt R, Nickel O, Reuter G, Lovley DR, Ehrenhofer-Murray A, Nellen W, Ankri S, et al. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu. Nucl Acids Res 2014; 42:6487-96; PMID:24711368; http://dx.doi.org/10.1093/nar/gku256
  • Addepalli B, Limbach PA. Mass spectrometry-based quantification of pseudouridine in RNA. J Am Soc Mass Spectrom 2011; 22:1363-72; PMID:21953190; http://dx.doi.org/10.1007/s13361-011-0137-5
  • Durairaj A, Limbach PA. Mass spectrometry of the fifth nucleoside: A review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 2008; 623:117-25; PMID:18620915; http://dx.doi.org/10.1016/j.aca.2008.06.027
  • Durairaj A, Limbach PA. Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal Chim Acta 2008; 612:173-81; PMID:18358863; http://dx.doi.org/10.1016/j.aca.2008.02.026
  • Pomerantz SC, McCloskey JA. Detection of the common RNA nucleoside pseudouridine in mixtures of oligonucleotides by mass spectrometry. Anal Chem 2005; 77:4687-97; PMID:16053277; http://dx.doi.org/10.1021/ac058023p
  • Taucher M, Ganisl B, Breuker K. Identification, localization, and relative quantitation of pseudouridine in RNA by tandem mass spectrometry of hydrolysis products. Int J Mass Spectrom 2011; 304:91-7; PMID:21960742; http://dx.doi.org/10.1016/j.ijms.2010.05.024
  • Mengel-Jørgensen J, Kirpekar F. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry. Nucleic Acids Res 2002; 30:e135; PMID:12466567; http://dx.doi.org/10.1093/nar/gnf135
  • Emmerechts G, Herdewijn P, Rozenski J. Pseudouridine detection improvement by derivatization with methyl vinyl sulfone and capillary HPLC–mass spectrometry. J Chromatogr B 2005; 825:233-8; http://dx.doi.org/10.1016/j.jchromb.2005.06.041
  • Wagner TM, Nair V, Guymon R, Pomerantz SC, Crain PF, Davis DR, McCloskey JA. A novel method for sequence placement of modified nucleotides in mixtures of transfer RNA. Nucleic Acids Symp Ser 2004; 48:263-4; http://dx.doi.org/10.1093/nass/48.1.263
  • Hossain M, Limbach PA. Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA 2007; 13:295-303; PMID:17194720; http://dx.doi.org/10.1261/rna.272507
  • Hossain M, Limbach PA. Multiple endonucleases improve MALDI-MS signature digestion product detection of bacterial transfer RNAs. Anal Bioanal Chem 2009; 394:1125-35; PMID:19104781; http://dx.doi.org/10.1007/s00216-008-2562-2
  • Wetzel C, Limbach PA. The global identification of tRNA isoacceptors by targeted tandem mass spectrometry. The Analyst 2013; 138:6063-72; PMID:23954863; http://dx.doi.org/10.1039/c3an01224g
  • Berhane BT, Limbach PA. Stable isotope labeling for matrix-assisted laser desorption/ionization mass spectrometry and post-source decay analysis of ribonucleic acids. J Mass Spectrom 2003; 38:872-8; PMID:12938108; http://dx.doi.org/10.1002/jms.504
  • Meng Z, Limbach PA. Quantitation of ribonucleic acids using 18O labeling and mass spectrometry. Anal Chem 2005; 77:1891-5; PMID:15762601; http://dx.doi.org/10.1021/ac048801y
  • Castleberry CM, Limbach PA. Relative quantitation of transfer RNAs using liquid chromatography mass spectrometry and signature digestion products. Nucleic Acids Res 2010; 38:e162; PMID:20587503; http://dx.doi.org/10.1093/nar/gkq578
  • Li S, Limbach PA. Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry. Anal Chem 2012; 84:8607-13; PMID:22985222; http://dx.doi.org/10.1021/ac301638c
  • Li S, Limbach PA. Mass spectrometry sequencing of transfer ribonucleic acids by the comparative analysis of RNA digests (CARD) approach. The Analyst 2013; 138:1386-94; PMID:23295341; http://dx.doi.org/10.1039/c2an36515d
  • Waghmare SP, Dickman MJ. Characterization and quantification of RNA post-transcriptional modifications using stable isotope labeling of RNA in conjunction with mass spectrometry analysis. Anal Chem 2011; 83:4894-901; PMID:21539333; http://dx.doi.org/10.1021/ac200547y
  • Popova AM, Williamson JR. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 2014; 136:2058-69; PMID:24422502; http://dx.doi.org/10.1021/ja412084b
  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X. Methylation as a crucial step in plant microRNA biogenesis. Science 2005; 307:932-5; PMID:15705854; http://dx.doi.org/10.1126/science.1107130
  • Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007; 17:1265-72; PMID:17604629; http://dx.doi.org/10.1016/j.cub.2007.06.030
  • Kirino Y, Mourelatos Z. The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 2007; 13:1397-401; PMID:17652135; http://dx.doi.org/10.1261/rna.659307
  • Huang TY, Liu J, McLuckey SA. Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation. J Am Soc Mass Spectrom 2010; 21:890-8; PMID:20080046; http://dx.doi.org/10.1016/j.jasms.2009.12.007
  • Taucher M, Breuker K. Characterization of modified RNA by top-down mass spectrometry. Angewandte Chemie 2012; 51:11289-92; PMID:23042528; http://dx.doi.org/10.1002/anie.201206232
  • Buck M, Connick M, Ames BN. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: The 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem 1983; 129:1-13; PMID:6190418; http://dx.doi.org/10.1016/0003-2697(83)90044-1
  • Pomerantz SC, McCloskey JA. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol 1990; 193:796-824; PMID:1706064; http://dx.doi.org/10.1016/0076-6879(90)93452-Q
  • Tuytten R, Lemière F, Van Dongen W, Witters E, Esmans EL, Newton RP, Dudley E. Development of an On-Line SPE-LC–ESI-MS Method for Urinary Nucleosides:  Hyphenation of Aprotic Boronic Acid Chromatography with Hydrophilic Interaction LC–ESI-MS. Anal Chem 2008; 80:1263-71; PMID:18198895; http://dx.doi.org/10.1021/ac702057u
  • Philibert GS, Olesik SV. Characterization of enhanced-fluidity liquid hydrophilic interaction chromatography for the separation of nucleosides and nucleotides. J Chromatogr A 2011; 1218:8222-30; PMID:21974894; http://dx.doi.org/10.1016/j.chroma.2011.09.037
  • Qiu H, Wanigasekara E, Zhang Y, Tran T, Armstrong DW. Development and evaluation of new zwitterionic Hydrophilic interaction liquid chromatography stationary phases based on 3-P,P-diphenylphosphonium-propylsulfonate. J Chromatogr A 2011; 1218:8075-82; PMID:21963182; http://dx.doi.org/10.1016/j.chroma.2011.09.016
  • Rodríguez-Gonzalo E, García-Gómez D, Carabias-Martínez R. Study of retention behaviour and mass spectrometry compatibility in zwitterionic hydrophilic interaction chromatography for the separation of modified nucleosides and nucleobases. J Chromatogr A 2011; 1218:3994-4001; http://dx.doi.org/10.1016/j.chroma.2011.05.003
  • Laourdakis CD, Merino EF, Neilson AP, Cassera MB. Comprehensive quantitative analysis of purines and pyrimidines in the human malaria parasite using ion-pairing ultra-performance liquid chromatography–mass spectrometry. J Chromatogr B 2014; 967:127-33; http://dx.doi.org/10.1016/j.jchromb.2014.07.012
  • Machon C, Jordheim L, Puy J-Y, Lefebvre I, Dumontet C, Guitton J. Fully validated assay for the quantification of endogenous nucleoside mono- and triphosphates using online extraction coupled with liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2014; 406:2925-41; PMID:24633509; http://dx.doi.org/10.1007/s00216-014-7711-1
  • Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. Analysis of oligonucleotides by HPLC−Electrospray Ionization Mass Spectrometry. Anal Chem 1997; 69:1320-5; PMID:21639339; http://dx.doi.org/10.1021/ac960916h
  • Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. New procedure for the use of high-performance liquid chromatography-electrospray ionization mass spectrometry for the analysis of nucleotides and oligonucleotides. J Chromatogr A 1997; 777:3-21; http://dx.doi.org/10.1016/S0021-9673(97)00256-2
  • Gong L, McCullagh JSO. Analysis of oligonucleotides by hydrophilic interaction liquid chromatography coupled to negative ion electrospray ionization mass spectrometry. J Chromatogr A 2011; 1218:5480-6; PMID:21741051; http://dx.doi.org/10.1016/j.chroma.2011.06.044
  • Li Q, Lynen F, Wang J, Li H, Xu G, Sandra P. Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides. J Chromatogr A 2012; 1255:237-43; PMID:22204934; http://dx.doi.org/10.1016/j.chroma.2011.11.062
  • Easter RN, Kroning KK, Caruso JA, Limbach PA. Separation and identification of oligonucleotides by hydrophilic interaction liquid chromatography (HILIC)-inductively coupled plasma mass spectrometry (ICPMS). Analyst 2010; 135:2560-5; PMID:20830328; http://dx.doi.org/10.1039/c0an00399a
  • Castleberry CM, Rodicio LP, Limbach PA. Electrospray ionization mass spectrometry of oligonucleotides. Curr Protoc Nucleic Acid Chem 2008; Chapter 10:Unit 10 2; PMID:19085982
  • Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev 2014; 33:302-31; PMID:24285362; http://dx.doi.org/10.1002/mas.21388
  • Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. Liquid chromatography–mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A 2013; 1292:51-65; PMID:23631876; http://dx.doi.org/10.1016/j.chroma.2013.04.017
  • Piekna-Przybylska D, Decatur WA, Fournier MJ. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res 2008; 36:D178-D83; PMID:17947322; http://dx.doi.org/10.1093/nar/gkm855
  • Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009; 37:D159-D62; PMID:18957446; http://dx.doi.org/10.1093/nar/gkn772
  • Nakayama H, Takahashi N, Isobe T. Informatics for mass spectrometry-based RNA analysis. Mass Spectrom Rev 2011; 30:1000-12; PMID:21328601; http://dx.doi.org/10.1002/mas.20325
  • Matthiesen R, Kirpekar F. Identification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping. Nucleic Acids Res 2009; 37:e48; PMID:19264806; http://dx.doi.org/10.1093/nar/gkp139
  • Nakayama H, Akiyama M, Taoka M, Yamauchi Y, Nobe Y, Ishikawa H, Takahashi N, Isobe T. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data. Nucleic Acids Res 2009; 37:e47-e; PMID:19270066; http://dx.doi.org/10.1093/nar/gkp099
  • Kapp EA, Schütz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, et al. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 2005; 5:3475-90; PMID:16047398; http://dx.doi.org/10.1002/pmic.200500126
  • Nyakas A, Blum LC, Stucki SR, Reymond J-L, Schürch S. OMA and OPA—Software-Supported Mass Spectra Analysis of Native and Modified Nucleic Acids. J Am Soc Mass Spectrom 2013; 24:249-56; PMID:23264149; http://dx.doi.org/10.1007/s13361-012-0529-1
  • Sample PJ, Gaston KW, Alfonzo JD, Limbach PA. RoboOligo: Software for Mass Spectrometry Data to Support Manual and De Novo Sequencing of Post-transcriptionally Modified Ribonucleic Acids. 2015; manuscript under review
  • McKinlay A, Gerard W, Fields S. Global analysis of RNA oxidation in Saccharomyces cerevisiae. BioTechniques 2012; 52:109-11; PMID:22313409; http://dx.doi.org/10.2144/000113801
  • Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: Detection, enzymatic formation and biological functions. Nucleic Acids Res 2010; 38:1415-30; PMID:20007150; http://dx.doi.org/10.1093/nar/gkp1117
  • Song CX, Yi C, He C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol 2012; 30:1107-16; PMID:23138310; http://dx.doi.org/10.1038/nbt.2398
  • Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 2009; 37:e12. doi:10.1093/nar/gkn954
  • Cattenoz PB, Taft RJ, Westhof E, Mattick JS. Transcriptome-wide identification of A >i RNA editing sites by inosine specific cleavage. RNA 2013; 19:257-70; PMID:23264566; http://dx.doi.org/10.1261/rna.036202.112
  • Tomikawa C, Ohira T, Inoue Y, Kawamura T, Yamagishi A, Suzuki T, Hori H. Distinct tRNA modifications in the thermo-acidophilic archaeon, Thermoplasma acidophilum. FEBS Lett 2013; 587:3575-80; PMID:24076028; http://dx.doi.org/10.1016/j.febslet.2013.09.021
  • Puri P, Wetzel C, Saffert P, Gaston KW, Russell SP, Varela JAC, van der Vlies P, Zhang G, Limbach PA, Ignatova Z, Poolman B. Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Molecular Microbiology 2014; 93:944-956. doi:10.1111/mmi.12710
  • Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94; PMID:23438204; http://dx.doi.org/10.1021/cr3003533
  • McQueen P, Krokhin O. Optimal selection of 2D reversed-phase–reversed-phase HPLC separation techniques in bottom-up proteomics. Expert Rev Proteomics 2012; 9:125-8; PMID:22462784; http://dx.doi.org/10.1586/epr.12.8
  • Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL. Large-scale Top-down Proteomics of the Human Proteome: Membrane Proteins, Mitochondria, and Senescence. Mol Cell Proteomics 2013; 12:3465-73; PMID:24023390; http://dx.doi.org/10.1074/mcp.M113.030114
  • Wetzel C, Li S, Limbach PA. Metabolic de-isotoping for improved LC-MS characterization of modified RNAs. J Am Soc Mass Spectrom 2014; 25:1114-23; PMID:24760295; http://dx.doi.org/10.1007/s13361-014-0889-9