1,388
Views
23
CrossRef citations to date
0
Altmetric
REVIEW

Convergent evolution of AUA decoding in bacteria and archaea

&
Pages 1586-1596 | Received 31 Jul 2014, Accepted 15 Oct 2014, Published online: 26 Feb 2015

References

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 2002; 111:721-32; PMID:12464183; http://dx.doi.org/10.1016/S0092-8674(02)01086-3
  • Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 2001; 292:897-902; PMID:11340196; http://dx.doi.org/10.1126/science.1060612
  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV 4th, Weir JR, Ramakrishnan V. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 2009; 326:688-94; PMID:19833920; http://dx.doi.org/10.1126/science.1179700
  • Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 2010; 330:835-8; PMID:21051640; http://dx.doi.org/10.1126/science.1194460
  • Crick FH. Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 1966; 19:548-55; PMID:5969078; http://dx.doi.org/10.1016/S0022-2836(66)80022-0
  • Suzuki T. Biosynthesis and function of tRNA wobble modifications. in Topics in Current Genetics, Vol. 12 24-69 (Springer-Verlag, NY, 2005).
  • Yokoyama S, Nishimura S. Modified nucleosides and codon recognition. in tRNA: Structure, Biosynthesis, and Function (ed. Soll, DR, U. L) 207-24 (American Society for Microbiology, Washington, D.C., 1995).
  • Bjork G. Biosynthesis and function of modified nucleosides. in tRNA: Structure, Biosynthesis, and Function (ed. Soll, DR, U. L) 165-205 (American Society for Microbiology, Washington, D.C., 1995).
  • Muramatsu T. Yokoyama S, Horie N, Matsuda A, Ueda T, Yamaizumi Z, Kuchino Y, Nishimura S, Miyazawa T. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J Biol Chem 1988; 263:9261-7; PMID:3132458
  • Soma A, Ikeuchi Y, Kanemasa S, Kobayashi K, Ogasawara N, Ote T, Kato J, Watanabe K, Sekine Y, Suzuki T. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell 2003; 12:689-98; PMID:14527414; http://dx.doi.org/10.1016/S1097-2765(03)00346-0
  • Ikeuchi Y, Soma A, Ote T, Kato J, Sekine Y, Suzuki T. Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol Cell 2005; 19:235-46; PMID:16039592; http://dx.doi.org/10.1016/j.molcel.2005.06.007
  • Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura S, Miyazawa T, Yokoyama S. Codon and Amino-Acid Specificities of a Transfer-Rna Are Both Converted by a Single Post-Transcriptional Modification. Nature 1988; 336:179-81; PMID:3054566; http://dx.doi.org/10.1038/336179a0
  • Edmonds CG, Crain PF, Gupta R, Hashizume T, Hocart CH, Kowalak JA, Pomerantz SC, Stetter KO, McCloskey JA. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol 1991; 173:3138-48; PMID:1708763
  • Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem 1984; 259:9461-71; PMID:6746655
  • Kohrer C, Srinivasan G, Mandal D, Mallick B, Ghosh Z, Chakrabarti J, Rajbhandary UL. Identification and characterization of a tRNA decoding the rare AUA codon in Haloarcula marismortui. RNA 2008; 14:117-26; PMID:17998287; http://dx.doi.org/10.1261/rna.795508
  • Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T, Wada T, Suzuki T, Suzuki T. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 2010; 6:277-82; PMID:20139989; http://dx.doi.org/10.1038/nchembio.323
  • Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev 1985; 49:81-99; PMID:3157043
  • Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids 2008; 34:35-45; PMID:17356805; http://dx.doi.org/10.1007/s00726-007-0501-8
  • Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 2005; 388:427-33; PMID:15673283; http://dx.doi.org/10.1042/BJ20041778
  • Fukuda W, Morimoto N, Imanaka T, Fujiwara S. Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 2008; 287:113-20; PMID:18702616; http://dx.doi.org/10.1111/j.1574-6968.2008.01303.x
  • Blaby IK, Phillips G, Blaby-Haas CE, Gulig KS, El Yacoubi B, de Crécy-Lagard V. Towards a systems approach in the genetic analysis of archaea: Accelerating mutant construction and phenotypic analysis in Haloferax volcanii. Archaea 2010; 2010:426239; PMID:21234384; http://dx.doi.org/10.1155/2010/426239
  • Mandal D, Köhrer C, Su D, Russell SP, Krivos K, Castleberry CM, Blum P, Limbach PA, Söll D, RajBhandary UL. Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(Ile), base pairs with adenosine but not with guanosine. Proc Natl Acad Sci U S A 2010; 107:2872-7; PMID:20133752; http://dx.doi.org/10.1073/pnas.0914869107
  • Voorhees RM, Mandal D, Neubauer C, Köhrer C, RajBhandary UL, Ramakrishnan V. The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome. Nat Struct Mol Biol 2013; 20:641-3; PMID:23542153; http://dx.doi.org/10.1038/nsmb.2545
  • Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol 2011; 18:432-6; PMID:21378964; http://dx.doi.org/10.1038/nsmb.2003
  • Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc Jpn Acad Ser B Phys Biol Sci 2010; 86:11-39; PMID:20075606; http://dx.doi.org/10.2183/pjab.86.11
  • Westhof E. Isostericity and tautomerism of base pairs in nucleic acids. FEBS Lett 2014; 588:2464-9; PMID:24950426; http://dx.doi.org/10.1016/j.febslet.2014.06.031
  • Nakanishi K, Fukai S, Ikeuchi Y, Soma A, Sekine Y, Suzuki T, Nureki O. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Proc Natl Acad Sci U S A 2005; 102:7487-92. Epub 2005 May 13; PMID:15894617; http://dx.doi.org/10.1073/pnas.0501003102
  • Kuratani M, Yoshikawa Y, Bessho Y, Higashijima K, Ishii T, Shibata R, Takahashi S, Yutani K, Yokoyama S. Structural basis of the initial binding of tRNA(Ile) lysidine synthetase TilS with ATP and L-lysine. Structure 2007; 15:1642-53; PMID:18073113; http://dx.doi.org/10.1016/j.str.2007.09.020
  • Nakanishi K, Bonnefond L, Kimura S, Suzuki T, Ishitani R, Nureki O. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 2009; 461:1144-8; PMID:19847269; http://dx.doi.org/10.1038/nature08474
  • Osawa T, Kimura S, Terasaka N, Inanaga H, Suzuki T, Numata T. Structural basis of tRNA agmatinylation essential for AUA codon decoding. Nat Struct Mol Biol 2011; 18:1275-80; PMID:22002223; http://dx.doi.org/10.1038/nsmb.2144
  • Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 2006; 442:419-24; PMID:16871210; http://dx.doi.org/10.1038/nature04896
  • Losey HC, Ruthenburg AJ, Verdine GL. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat Struct Mol Biol 2006; 13:153-9; PMID:16415880; http://dx.doi.org/10.1038/nsmb1047
  • Suzuki T, Miyauchi K. Discovery and characterization of tRNAIle lysidine synthetase (TilS). FEBS Lett 2010; 584:272-7; PMID:19944692; http://dx.doi.org/10.1016/j.febslet.2009.11.085
  • Terasaka N, Kimura S, Osawa T, Numata T, Suzuki T. Biogenesis of 2-agmatinylcytidine catalyzed by the dual protein and RNA kinase TiaS. Nat Struct Mol Biol 2011; 18:1268-74; PMID:22002222; http://dx.doi.org/10.1038/nsmb.2121
  • Bork P, Koonin EV. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Proteins 1994; 20:347-55; PMID:7731953; http://dx.doi.org/10.1002/prot.340200407
  • Kambampati R, Lauhon CT. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 2003; 42:1109-17; PMID:12549933; http://dx.doi.org/10.1021/bi026536+
  • Tesmer JJ, Klem TJ, Deras ML, Davisson VJ, Smith JL. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Biol 1996; 3:74-86; PMID:8548458; http://dx.doi.org/10.1038/nsb0196-74
  • Taniguchi T, Miyauchi K, Nakane D, Miyata M, Muto A, Nishimura S, Suzuki T. Decoding system for the AUA codon by tRNAIle with the UAU anticodon in Mycoplasma mobile. Nucleic Acids Res 2013; 41:2621-31; PMID:23295668; http://dx.doi.org/10.1093/nar/gks1344
  • Abe T, Inokuchi H, Yamada Y, Muto A, Iwasaki Y, Ikemura T. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data. Front Genet 2014; 5:114; PMID:24822057; http://dx.doi.org/10.3389/fgene.2014.00114
  • Kohrer C, Mandal D, Gaston KW, Grosjean H, Limbach PA, Rajbhandary UL. Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile. Nucleic Acids Res 2014; 42:1904-15; PMID:24194599; http://dx.doi.org/10.1093/nar/gkt1009
  • Fabret C, Dervyn E, Dalmais B, Guillot A, Marck C, Grosjean H, Noirot P. Life without the essential bacterial tRNA Ile2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis. Mol Microbiol 2011; 80:1062-74; PMID:21435031; http://dx.doi.org/10.1111/j.1365-2958.2011.07630.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.