1,379
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana

, , &
Article: e970410 | Received 27 May 2014, Accepted 09 Jul 2014, Published online: 15 Jul 2015

References

  • Bittel P, Robatzek S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 2007; 10:335-341; PMID:17652011; http://dx.doi.org/10.1016/j.pbi.2007.04.021
  • Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009; 324:742-4; PMID:19423812; http://dx.doi.org/10.1126/science.1171647
  • Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323-9; PMID:17108957; http://dx.doi.org/10.1038/nature05286
  • Hayward HC. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann Rev Phytopathol 1991; 29:65-87; http://dx.doi.org/10.1146/annurev.py.29.090191.000433
  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley, N. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant-Microbe Interact 1996; 9:826-36; http://dx.doi.org/10.1094/MPMI-9-0826
  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anaïs G, Mangin B, Bazin B, Nazer R, Grimsley N. Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant-Microbe Interact 1996; 9:837-42; http://dx.doi.org/10.1094/MPMI-9-0837
  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acd Sci USA 2002; 99:24048.
  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acd Sci USA 2003; 100:8024-9; http://dx.doi.org/10.1073/pnas.1230660100
  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 2009 136:32435; PMID:19470092; http://dx.doi.org/10.1111/j.1399-3054.2009.01226.x
  • Komori D, Nishihara M, Takahashi A, Gupta M, Yoshioka H, Mizumoto H, Ohnishi K, Hikichi Y, Kiba A. Isolation and characterization of an asparagine-rich protein that regulates hypersensitive cell death-mediated resistance in Nicotiana plants. Plant Biotechnology 2012; 29:292-300; http://dx.doi.org/10.5511/plantbiotechnology.12.0213b
  • Gupta M, Yoshioka H, Ohnishi K, Mizumoto H, Hikichi Y, Kiba A. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. Plant Cell Physiol 2013; 54:1403-14; PMID:23788648; http://dx.doi.org/10.1093/pcp/pct090
  • Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. S glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum. Plant Physiol 2010; 152:2023-35; PMID:20118275; http://dx.doi.org/10.1104/pp.109.148189
  • Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana Plants in the defense response against Ralstonia solanacearum. Plant Physiol 2007; 145:1588-99; PMID:17965181; http://dx.doi.org/10.1104/pp.107.105353
  • Liu Y, Schiff M, Marathe R, Dinesh-Kummar S. Tobacco Rar1, EDS1 and NPR1NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 2002; 30:415-29; PMID:12028572; http://dx.doi.org/10.1046/j.1365-313X.2002.01297.x
  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H., Terauchi R. Cytosolic HSP90 and HSP70 are essential components of Inf1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 2003; 4:383-91; PMID:20569398; http://dx.doi.org/10.1046/j.1364-3703.2003.00186.x
  • Jelenska J, van Hal JA, Greenberg JT. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. PNAS 2010; 107:13177-82; PMID:20615948
  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 2002; 295 2077-80; PMID:11847308; http://dx.doi.org/10.1126/science.1067747
  • Azevedo C, Sadanandom A, Kitagawa, K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 2002; 295:2073-76; PMID:11847307; http://dx.doi.org/10.1126/science.1067554
  • Tör M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Türk F, Can C, Dangl JL, Holub EB. Arabidopsis SGT1b Is Required for Defense Signaling Conferred by Several Downy Mildew Resistance Genes. Plant Cell 2002; 14:993-1003; PMID:12034892; http://dx.doi.org/10.1105/tpc.001123
  • Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, and Dinesh-Kumar SP. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 2004; 54:701-11; PMID:15356389; http://dx.doi.org/10.1023/B:PLAN.0000040899.53378.83
  • Kim NH, Kim DS, Chung EH, Hwang BK. Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiol 2014; 165:76-91; PMID:24686111; http://dx.doi.org/10.1104/pp.114.238840
  • Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. Plant J 2014; 79:427-39; http://dx.doi.org/10.1111tpj.12573
  • EI Oirdi M, Bouarab K. SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions. New Phytol 2007; 175:131-9; PMID:17547673; http://dx.doi.org/10.1111/j.1469-8137.2007.02086.x
  • Cuzick A, Maguire K, Hammond-Kosack KE. Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. New Phytologist 2009; 181:901-12; PMID:19140951; http://dx.doi.org/10.1111/j.1469-8137.2008.02712.x
  • Uppalapati SR, Ishiga Y, Ryu CM, Ishiga T, Wang K, Noe LD, Parker JE, Mysore KS. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytologist 2011; 189:83-93; PMID:20854394; http://dx.doi.org/10.1111/j.1469-8137.2010.03470.x
  • Wang K, Uppalapati SR, Zhu X, Dihesh-Kumar SP, Mysore KS. SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant–pathogen interactions. Mol Plant Pathol 2010; 11:597-611; PMID:20695999
  • Ito M, Yamamoto Y, Kim CS, Ohnishi K, Hikichi Y, Kiba A. Heat shock protein 70 is required for tabtoxinine-β-lactam-induced cell death in Nicotiana benthamiana. J Plant Physiol 2014; 171:173-8; PMID:24331433; http://dx.doi.org/10.1016/j.jplph.2013.10.012
  • Anand A, Mysore KS. The role of RAR1 in Agrobacterium-mediated plant transformation. Plant Signal Behav. 2013; 9:e26784; http://dx.doi.org/10.4161/psb.26784
  • Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes RW, Zhou JM. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host & Microbe 2010; 7:164-75; PMID:20159621; http://dx.doi.org/10.1016/j.chom.2010.01.009
  • Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, Zhou JM. RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. PNAS 2006; 103:19200-05; PMID:17148606; http://dx.doi.org/10.1073/pnas.0607279103
  • Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DDO, Hsu KJ, Imami K, Ross CJ, Hayden MR, Foster LJ, et al. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. Plos Pathogen 2013; 9:e1003518; http://dx.doi.org/10.1371/journal.ppat.1003518
  • Kanda A, Ohnishi K, Kiba A, Hikichi Y. Implication of C-terminal mutation of PopA of Ralstonia solanacearum strain OE1-1 in suppression of bacterial wilt. Plant Pathology 2009; 58:159-69; http://dx.doi.org/10.1111/j.1365-3059.2008.01938.x
  • Baulcombe DC, Chapman S, Cruz SS. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 1995; 7:1045-53; PMID:7599646; http://dx.doi.org/10.1046/j.1365-313X.1995.07061045.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.