1,648
Views
17
CrossRef citations to date
0
Altmetric
SHORT COMMUNICATION

Overexpression of the JAZ factors with mutated jas domains causes pleiotropic defects in rice spikelet development

, , , &
Article: e970414 | Received 28 May 2014, Accepted 09 Jul 2014, Published online: 22 Dec 2014

References

  • Sablowski R. Flowering and determinacy in arabidopsis. J Exp Bot 2007; 58:899-907; PMID:17293602
  • Hirano HY, Tanaka W, Toriba T. Grass flower development. Methods Mol Biol 2014; 1110:57-84; PMID:24395252; http://dx.doi.org/10.1007/978-1-4614-9408-9_3
  • Tanaka W, Pautler M, Jackson D, Hirano HY. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 2013; 54:313-24; PMID:23378448; http://dx.doi.org/10.1093/pcp/pct016
  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 2006; 18:15-28; PMID:16326928
  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, et al. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 2000; 12:871-84; PMID:10852934
  • Takeoka Y, Shimizu M, Wada T. Panicles. In: Matsuo T, Hoshikawa K, eds. Science of the Rice Plant, Vol.1. Morphology, Tokyo: Food and Agriculture Policy Research Center, 1993, pp. 295-338
  • Takeoka Y, Shimizu M. Vegetative proliferations of frolal spikelets in Oryza sativa L.: II. The proliferative structure in the spikelets of the mutant strain induced by X-ray irradiation. Proc Crop Sci Soc Japan 1973; 42:520-26
  • Takeoka Y, Shimizu M. Vegetative proliferations of frolal spikelets in Oryza sativa L.: IV. Histo- and organo-genesis in the proliferated spikelets (I). Proc Crop Sci Soc Japan 1974; 43:445-52
  • Takeoka Y, Shimizu M. Vegetative proliferations of frolal spikelets in Oryza sativa L.: V. Seasonal change of the type of proliferations which differentiate in the spikelets of a mutant induced by X-ray irradiation. Proc Crop Sci Soc Japan 1974; 43:523-30
  • Creelman RA, Mullet JE. Biosynthesis and action of jasmonate in plants. Annu Rev Plant Physiol Plant Mol Biol 1997; 48:355-81; PMID:15012267
  • Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 2007; 100:681-97; PMID:17513307
  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, et al. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 2011; 52:1686-96; PMID:21828106; http://dx.doi.org/10.1093/pcp/pcr105
  • Koo AJ, Cooke TF, Howe GA. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci USA 2011; 108:9298-303; PMID:21576464; http://dx.doi.org/10.1073/pnas.1103542108
  • Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, et al. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 2012; 287:6296-306; PMID:22215670; http://dx.doi.org/10.1074/jbc.M111.316364
  • Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, et al. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 2013; 25:1709-25; PMID:23715469; http://dx.doi.org/10.1105/tpc.113.112052
  • Toda Y, Yoshida M, Hattori T, Takeda S. RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex. Plant Signal Behav 2013; 8:e26256; PMID:23989667; http://dx.doi.org/10.4161/psb.26256
  • Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 2004; 16:2117-27; PMID:15258265
  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 2008; 105:7100-5; PMID:18458331; http://dx.doi.org/10.1073/pnas.0802332105
  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010; 468:400-5; PMID:20927106; http://dx.doi.org/10.1038/nature09430
  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007; 448:666-71; PMID:17637675
  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 2007; 448:661-5; PMID:17637677
  • Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 2012; 17:22-31; PMID:22112386; http://dx.doi.org/10.1016/j.tplants.2011.10.006
  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 2008; 55:979-88; PMID:18547396; http://dx.doi.org/10.1111/j.1365-313X.2008.03566.x
  • Hakata M, Nakamura H, Iida-Okada K, Miyao A, Kajikawa M, Imai-Toki N, Jinhuan P, Kou A, Akihiko H, Tomoko T-M, et al. Production and characterization of a large population of cDNA-overexpressing transgenic rice plants using Gateway-based full-length cDNA expression libraries. Breed Sci 2010; 60:575-85; http://dx.doi.org/10.1270/jsbbs.60.575
  • Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 2008; 135:3013-9; PMID:18701544; http://dx.doi.org/10.1242/dev.024273
  • Lee DY, An G. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 2012; 69:445-61; PMID:22003982; http://dx.doi.org/10.1111/j.1365-313X.2011.04804.x
  • Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, et al. Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J 2013; 74:226-38; PMID:23347338; http://dx.doi.org/10.1111/tpj.12115
  • Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J 2009; 57:593-605; PMID:18980657; http://dx.doi.org/10.1111/j.1365-313X.2008.03710.x
  • Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D. Jasmonic acid regulates spikelet development in rice. Nat Commun 2014; 5:3476; PMID:24647160; http://dx.doi.org/10.1038/ncomms4476
  • Ye H, Du H, Tang N, Li X, Xiong L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 2009; 71:291-305; PMID:19618278; http://dx.doi.org/10.1007/s11103-009-9524-8
  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol. 2009; 149:1751-60; PMID:19211695; http://dx.doi.org/10.1104/pp.108.134684
  • Stitz M, Gase K, Baldwin IT, Gaquerel E. Ectopic expression of AtJMT in Nicotiana attenuata: creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. Plant Physiol 2011; 157:341-54; PMID:21753114; http://dx.doi.org/10.1104/pp.111.178582

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.