2,324
Views
38
CrossRef citations to date
0
Altmetric
MINI-REVIEW

Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

, , &
Article: e970430 | Received 18 Jun 2014, Accepted 07 Jul 2014, Published online: 22 Dec 2014

References

  • Jenks MA, Hasegawa PM. Plant Abiotic Stress. 2nd edn, (Wiley-Blackwell, 2013).
  • Ream TS, Woods DP, Amasino RM. The molecular basis of vernalization in different plant groups. Cold Spring Harb Symp Quant Biol 2012; 77:105-15; PMID:23619014; http://dx.doi.org/10.1101/sqb.2013.77.014449
  • Song J, Irwin J, Dean C. Remembering the prolonged cold of winter. Curr Biol 2013; 23:R807-811; PMID:24028964; http://dx.doi.org/10.1016/j.cub.2013.07.027
  • Conrath U. Molecular aspects of defence priming. Trends Plant Sci 2011; 16:524-31; PMID:21782492; http://dx.doi.org/10.1016/j.tplants.2011.06.004
  • Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 2013; 64:839-63; PMID:23373699; http://dx.doi.org/10.1146/annurev-arplant-042811-105606
  • Dowen RH. Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 2012; 109:E2183-2191; PMID:22733782; http://dx.doi.org/10.1073/pnas.1209329109
  • Jaskiewicz M, Conrath U, Peterhänsel C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 2011; 12:50-55; PMID:21132017; http://dx.doi.org/10.1038/embor.2010.186
  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J. Next-generation systemic acquired resistance. Plant Physiol 2012; 158:844-53; PMID:22147520; http://dx.doi.org/10.1104/pp.111.187468
  • van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J. Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:5602-07; PMID:16565218; http://dx.doi.org/10.1073/pnas.0510213103
  • Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol 2012; 15:503-10; PMID:22940592; http://dx.doi.org/10.1016/j.pbi.2012.08.006
  • Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12; PMID:23329111; http://dx.doi.org/10.1038/nrg3355
  • Rigal M, Mathieu OA. “mille-feuille” of silencing: epigenetic control of transposable elements. Biochim Biophys Acta 2011; 1809:452-8; PMID:21514406; http://dx.doi.org/10.1016/j.bbagrm.2011.04.001
  • Axtell MJ. Classification and Comparison of Small RNAs from Plants. Annu Rev Plant Biol 2013; 64:137-59; PMID:23330790; http://dx.doi.org/10.1146/annurev-arplant-050312-120043
  • Rogers K, Chen X. Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. Plant Cell 2013; 25:2383-99; PMID:23881412; http://dx.doi.org/10.1105/tpc.113.113159
  • Creasey KM. Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 2014; 508:411-5; PMID:24670663; http://dx.doi.org/10.1038/nature13069
  • Suter L, Widmer A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS One 2013; 8:e60364; http://dx.doi.org/10.1371/journal.pone.0060364
  • Migicovsky Z, Yao Y, Kovalchuk I. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 2014; 9:e27971; PMID:24513700; http://dx.doi.org/10.4161/psb.27971
  • Pecinka A, Mittelsten Scheid O. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 2012; 53:801-8; PMID:22457398; http://dx.doi.org/10.1093/pcp/pcs044
  • McClintock B. The significance of responses of the genome to challenge. Science 1984; 226:792-801; PMID:15739260 http://dx.doi.org/10.1126/science.15739260
  • Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 2014; 65:505-30; PMID:24579996; http://dx.doi.org/10.1146/annurev-arplant-050213-035811
  • Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011; 12:615-27; PMID:21850042; http://dx.doi.org/10.1038/nrg3030
  • Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci 2012; 37:118-25; PMID:22236506; http://dx.doi.org/10.1016/j.tibs.2011.11.007
  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I. Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell 2014; 26:1792-807; PMID:24769482; http://dx.doi.org/10.1105/tpc.114.123851
  • Yeh CH, Kaplinsky NJ, Hu C, Charng YY. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 2012; 195:10-23; PMID:22920995; http://dx.doi.org/10.1016/j.plantsci.2012.06.004
  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 2007; 143:251-62; PMID:17085506; http://dx.doi.org/10.1104/pp.106.091322
  • Charng YY, Liu HC, Liu NY, Hsu F C, Ko SS. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 2006; 140:1297-305; PMID:16500991; http://dx.doi.org/10.1104/pp.105.074898
  • Meiri D, Breiman A. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 2009; 59:387-99; PMID:19366428; http://dx.doi.org/10.1111/j.1365-313X.2009.03878.x
  • Huijser P, Schmid M. The control of developmental phase transitions in plants. Development 2011; 138:4117-29; PMID:21896627; http://dx.doi.org/10.1242/dev.063511
  • Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009; 138:738-49; PMID:19703399; http://dx.doi.org/10.1016/j.cell.2009.06.014
  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009; 138, 750-9; PMID:19703400; http://dx.doi.org/10.1016/j.cell.2009.06.031
  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 2013; 74:840-51; PMID:23480361; http://dx.doi.org/10.1111/tpj.12169
  • Li S, Liu J, Liu Z, Li X, Wu F, He Y. Heat-induced tas1 target1 mediates thermotolerance via heat stress transcription factor a1a-directed pathways in arabidopsis. Plant Cell 2014; 26:1764-80; PMID:24728648; http://dx.doi.org/10.1105/tpc.114.124883
  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 2010; 22:3118-29; PMID:20876829; http://dx.doi.org/10.1105/tpc.110.078493
  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 2010; 3:594-602; PMID:20410255; http://dx.doi.org/10.1093/mp/ssq014
  • Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I. Stress-induced activation of heterochromatic transcription. PLoS Genet 2010; 6:e1001175; PMID:21060865; http://dx.doi.org/10.1371/journal.pgen.1001175
  • Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci U S A 2014; 111:8547-52; PMID:24912148; http://dx.doi.org/10.1073/pnas.1402275111
  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 2011; 472:115-9; PMID:21399627; http://dx.doi.org/10.1038/nature09861
  • Matsunaga W, Kobayashi A, Kato A, Ito H. The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana. Plant Cell Physiol 2012; 53:824-33; PMID:22173101; http://dx.doi.org/10.1093/pcp/pcr179
  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet 2014; 10:e1004115; PMID:24497839; http://dx.doi.org/10.1371/journal.pgen.1004115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.