801
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

Sunflower exposed to high-intensity microwave-frequency electromagnetic field: electrophysiological response requires a mechanical injury to initiate

, , &
Article: e972787 | Received 27 May 2014, Accepted 17 Jul 2014, Published online: 05 Feb 2015

References

  • Bertholon P. De l’electricite des vegetaux. PF Didot jeune. Paris: 1783.
  • Stahlberg R. Historical Overview on Plant Neurobiology. Plant Signal Behav 2006; 1:6-8; PMID:19521469; http://dx.doi.org/10.4161/psb.1.1.2278
  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 2006; 11:413-9; PMID:16843034; http://dx.doi.org/10.1016/j.tplants.2006.06.009
  • Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X. Research progress on electrical signals in higher plants. Prog Nat Sci 2009; 19:531-41; http://dx.doi.org/10.1016/j.pnsc.2008.08.009
  • Fromm J, Lautner S. Electrical signals and their physiological significance in plants. Plant, Cell Environ 2007; 30:249-57; http://dx.doi.org/10.1111/j.1365-3040.2006.01614.x
  • Graham JS, Hall G, Pearce G, Ryan CA. Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 1986; 169:399-405; PMID:24232653; http://dx.doi.org/10.1007/BF00392137
  • Davies E. Electrical Signals in Plants: Facts and Hypotheses. In: Volkov AG, editor. Plant Electrophysiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006; 407-422.
  • Stolarz M, Król E, Dziubińska H, Kurenda A. Glutamate induces series of action potentials and a decrease in circumnutation rate in Helianthus annuus. Physiol Plantarum 2010; 138:329-38; PMID:20051031; http://dx.doi.org/10.1111/j.1399-3054.2009.01330.x
  • Lang RD, Volkov AG. Solitary waves in soybean induced by localized thermal stress. Plant Signal Behav 2008; 3:224-8; PMID:19513218; http://dx.doi.org/10.4161/psb.3.4.5586
  • Stahlberg R. Historical Introduction to Plant Electrophysiology. In: Volkov PDAG, editor. Plant Electrophysiology. Springer Berlin Heidelberg; 2006; 3-14.
  • Spanswick RM. Electrogenic Pumps. In: Volkov PDAG, editor. Plant Electrophysiology. Springer Berlin Heidelberg; 2006; 221-246.
  • Stahlberg R, Cleland RE, Volkenburgh E. Slow Wave Potentials – a Propagating Electrical Signal Unique to Higher Plants. In: Baluška F, Mancuso S, Volkmann D, editors. Communication in Plants. Springer Berlin Heidelberg; 2006; 291-308.
  • Zawadzki T, Davies E, Dziubinska H, Trebacz K. Characteristics of action potentials in Helianthus annuus. Physiol Plantarum 1991; 83:601-4; http://dx.doi.org/10.1111/j.1399-3054.1991.tb02475.x
  • Stankovic B, Zawadzki T, Davies E. Characterization of the Variation Potential in Sunflower. Plant Physiol 1997; 115:1083-8; PMID:12223859
  • Ilík P, Hlaváčková V, Krchňák P, Nauš J. A low-noise multi-channel device for the monitoring of systemic electrical signal propagation in plants. Biol Plantarum 2010; 54:185-90; http://dx.doi.org/10.1007/s10535-010-0032-0
  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH. System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding. Plant Physiol 2009; 149:1593-1600; PMID:19129416; http://dx.doi.org/10.1104/pp.108.133884
  • Volkov AG, Lang RD, Volkova-Gugeshashvili MI. Electrical signaling in Aloe vera induced by localized thermal stress. Bioelectrochemistry 2007; 71:192-7; PMID:17544342; http://dx.doi.org/10.1016/j.bioelechem.2007.04.006
  • Dziubińska H, Trębacz K, Zawadzki T. Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 2001; 158:1167-72; http://dx.doi.org/10.1078/S0176-1617(04)70143-1
  • Stahlberg R, Cleland RE, Van Volkenburgh E. Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 2005; 220:550-8; PMID:15365838; http://dx.doi.org/10.1007/s00425-004-1363-x
  • Stahlberg R, Stephens NR, Cleland RE, Van Volkenburgh E. Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl. Plant Signal Behav 2006; 1:15-22; PMID:19521471; http://dx.doi.org/10.4161/psb.1.1.2275
  • Zawadzki T, Dziubiska H, Davies E. Characteristics of action potentials generated spontaneously in Helianthus annuus. Physiol Plantarum 1995; 93:291-7; http://dx.doi.org/10.1111/j.1399-3054.1995.tb02231.x
  • Volkov AG, Ranatunga DRA. Plants as Environmental Biosensors. Plant Signal Behav 2006; 1:105-15; PMID:19521490; http://dx.doi.org/10.4161/psb.1.3.3000
  • Wang Z-Y, Leng Q, Huang L, Zhao L-L, Xu Z-L, Hou R-F, Wang C. Monitoring system for electrical signals in plants in the greenhouse and its applications. Biosystems Eng 2009; 103:1-11; http://dx.doi.org/10.1016/j.biosystemseng.2009.01.013
  • Malone M, Alarcon J-J, Palumbo L. An hydraulic interpretation of rapid, long-distance wound signalling in the tomato. Planta 1994; 193:181-185; http://dx.doi.org/10.1007/BF00192528
  • Hlavácková V, Krchnák P, Naus J, Novák O, Spundová M, Strnad M. Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 2006; 225:235-44; http://dx.doi.org/10.1007/s00425-006-0325-x
  • Dziubinska H, Filek M, Koscielniak J, Trebacz K. Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 2003; 160:1203-10; PMID:14610889; http://dx.doi.org/10.1078/0176-1617-00914
  • Piyasena P, Dussault C, Koutchma T, Ramaswamy HS, Awuah GB. Radio frequency heating of foods: principles, applications and related properties-a review. Crit Rev Food Sci Nutr 2003; 43:587-606; PMID:14669879; http://dx.doi.org/10.1080/10408690390251129
  • Cole M, Sabins FF. Remote Sensing: Principles and Interpretation. The Geographical Journal 1987; 153:423; http://dx.doi.org/10.2307/633704
  • Stankovic B, Witters DL, Zawadzki T, Davies E. Action potentials and variation potentials in sunflower: An analysis of their relationships and distinguishing characteristics. Physiologia Plantarum 1998; 103:51-58; http://dx.doi.org/10.1034/j.1399-3054.1998.1030107.x
  • Telewski FW. A unified hypothesis of mechanoperception in plants. Am J Bot 2006; 93:1466-76; PMID:21642094; http://dx.doi.org/10.3732/ajb.93.10.1466
  • Xiong TC, Jauneau A, Ranjeva R, Mazars C. Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. Plant J 2004; 40:12-21; PMID:15361137; http://dx.doi.org/10.1111/j.1365-313X.2004.02184.x
  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiologia Plantarum 2006; 128:283-8; http://dx.doi.org/10.1111/j.1399-3054.2006.00740.x
  • Vian A, Faure C, Girard S, Davies E, Hallé F, Bonnet P, Ledoigt G, Paladian F. Plants Respond to GSM-Like Radiation. Plant Signal Behav 2007; 2:522-4; PMID:19704547; http://dx.doi.org/10.4161/psb.2.6.4657
  • Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 2008; 227:883-91; PMID:18026987; http://dx.doi.org/10.1007/s00425-007-0664-2
  • Goldsworthy A. Effects of Electrical and Electromagnetic Fields on Plants and Related Topics. In: Volkov PDAG, editor. Plant Electrophysiology. Springer Berlin Heidelberg; 2006; 247-67.
  • Engelmann JC, Deeken R, Müller T, Nimtz G, Roelfsema MRG, Hedrich R. Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach. Adv Appl Bioinform Chem 2008; 1:71-83; PMID:21918607
  • Tkalec M, Malarić K, Pevalek-Kozlina B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ 2007; 388:78-89; PMID:17825879; http://dx.doi.org/10.1016/j.scitotenv.2007.07.052
  • Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Z. Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat Res 2009; 672:76-81; PMID:19028599; http://dx.doi.org/10.1016/j.mrgentox.2008.09.022
  • Sharma VP, Singh HP, Kohli RK, Batish DR. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ 2009; 407:5543-7; PMID:19682728; http://dx.doi.org/10.1016/j.scitotenv.2009.07.006
  • Tafforeau M, Verdus M-C, Norris V, White GJ, Cole M, Demarty M, Thellier M, Ripoll C. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 2004; 25:403-7; PMID:15300725; http://dx.doi.org/10.1002/bem.10205
  • Skiles JW. Plant response to microwaves at 2.45 GHz. Acta Astronautica 2006; 58:258-63; http://dx.doi.org/10.1016/j.actaastro.2005.12.007
  • Senavirathna MDHJ, Asaeda T. Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. Biol Plant 2014; 58:355-62; http://dx.doi.org/10.1007/s10535-013-0384-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.