1,245
Views
8
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

Biochemical analysis of ‘kerosene tree’ Hymenaea courbaril L. under heat stress

, , &
Article: e972851 | Received 21 May 2014, Accepted 21 Jul 2014, Published online: 22 Dec 2014

References

  • Lee Y, Langenheim JH. Systematics of the Genus Hymenaea L. (Leguminosae, Caesalpinioideae, Detarieae). In: University of California publications in Botany (Vol. 69). Berkeley, CA: University of California Press, 1975.
  • Campos MAA, Uchida T. Influência do sombreamento no crescimento de mudas de três espécies amazônicas. Pesquisa Agropecuária Brasileira 2002; 37:281-8; http://dx.doi.org/10.1590/S0100-204X2002000300008
  • Cartaxo SL, Souza MM, de Albuquerque UP. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J Ethnopharmacol 2010; 131:326-42; PMID:20621178; http://dx.doi.org/10.1016/j.jep.2010.07.003
  • Carneiro FS, Lacerda AE, Lemes MR, Gribel R, Kanashiro M, Sebbenn AM. Mendelian inheritance, linkage and genotypic disequilibrium in microsatellite loci isolated from Hymenaea courbaril (Leguminosae). Genet Mol Res 2012; 11:1942-8; PMID:22869549; http://dx.doi.org/10.4238/2012.July.19.13
  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles 1992; 6:389-430; http://dx.doi.org/10.1029/92GB02125
  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, et al. A global model of natural volatile organic compound emissions. J Geophys Res: Atmospheres 1995; 100:8873-92; http://dx.doi.org/10.1029/94JD02950
  • Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. Ann Bot 2008; 101:5-18; PMID:17921528; http://dx.doi.org/10.1093/aob/mcm240
  • Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: An overview. Environ Exp Bot 2007; 61:199-223; http://dx.doi.org/10.1016/j.envexpbot.2007.05.011
  • Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr Opin Microbiol 2009; 12:274-81; PMID:19447673; http://dx.doi.org/10.1016/j.mib.2009.04.004
  • Harvey BG, Wright ME, Quintana RL. High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuels 2009; 24:267-73; http://dx.doi.org/10.1021/ef900799c
  • Calvin M. Hydrocarbons from plants: Analytical methods and observations. Naturwissenschaften 1980; 67:525-33; http://dx.doi.org/10.1007/BF00450661
  • Meylemans HA, Quintana RL, Harvey BG. Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 2012; 97:560-8; http://dx.doi.org/10.1016/j.fuel.2012.01.062
  • Janick J, Paull, RE (Editors). The Encyclopedia of Fruit & Nuts. Cambridge, MA: CABI Publishing, 2008.
  • Holopainen JK. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Tree Physiol 2011; 31:1356-77; PMID:22112623; http://dx.doi.org/10.1093/treephys/tpr111
  • Dicke M, Gols R, Ludeking D, Posthumus M. Jasmonic Acid and Herbivory Differentially Induce Carnivore-Attracting Plant Volatiles in Lima Bean Plants. J Chem Ecol 1999; 25:1907-22; http://dx.doi.org/10.1023/A :1020942102181
  • Jardine K, Abrell L, Kurc SA, Huxman T, Ortega J, Guenther A. Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmospheric Chem Phys 2010; 10:12191-206; http://dx.doi.org/10.5194/acp-10-12191-2010
  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 2003; 15:1227-41; PMID:12724546; http://dx.doi.org/10.1105/tpc.011015
  • Navia-Giné WG, Gomez SK, Yuan J, Chen F, Korth KL. Insect-induced gene expression at the core of volatile terpene release in. Plant Signal Behav 2009; 4:636-8; http://dx.doi.org/10.4161/psb.4.7.8971
  • Harborne JB. Recent advances in the ecological chemistry of plant terpenoids. In: Harborne JB, Tomas-Barberan FA, ed. Ecological Chemistry and Biochemistry of Plant Terpenoids Clarendon Press, Oxford, UK., 1991:399-426.
  • Loreto F, Sharkey TD. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 1993; 189:420-4; PMID:24178500; http://dx.doi.org/10.1007/BF00194440
  • Munné-Bosch S, Alegre L. Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 2003; 131:1816-25; http://dx.doi.org/10.1104/pp.102.019265
  • Sharkey T, Loreto F. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 1993; 95:328-33; http://dx.doi.org/10.1007/BF00320984
  • Tingey DT, Turner DP, Weber JA. Factors controlling the emission of monoterpenes and other volatile organic compounds. In: Sharkey TD, Holland EA, Mooney HA, ed. Trace Gas Emissions by Plants Academic Press, San Diego, CA, USA, 1991:93-119.
  • Loreto F, Förster A, Dürr M, Csiky O, Seufert G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant, Cell Environ 1998; 21:101-7; http://dx.doi.org/10.1046/j.1365-3040.1998.00268.x
  • Pateraki I, Kanellis AK. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus. Plant Cell Rep 2010; 29:629-41; PMID:20364257; http://dx.doi.org/10.1007/s00299-010-0849-1
  • Bokszczanin KL, Fragkostefanakis S, Consortium SPTITNS-I. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 2013; 4:315; PMID:23986766; http://dx.doi.org/10.3389/fpls.2013.00315
  • Weng M, Yang YUE, Feng H, Pan Z, Shen W-H, Zhu YAN, Dong A. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant, Cell Environ 2014: http://dx.doi.org/10.1111/pce.12299
  • Erkina TY, Erkine AM. Displacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation. Mol Cell Biol 2006; 26:7587-600; PMID:17015479; http://dx.doi.org/10.1128/MCB.00666-06
  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 2010; 140:136-47.
  • Weng M, Yang Y, Feng H, Pan Z, Shen WH, Zhu Y, Dong A. Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 2014; PMID:24548003
  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 2010; 3:594-602; PMID:20410255; http://dx.doi.org/10.1093/mp/ssq014
  • Chinnusamy V, Zhu, J.K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 2009; 12:133-9; PMID:19179104; http://dx.doi.org/10.1016/j.pbi.2008.12.006
  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 2007; 447:735-8; PMID:17554311; http://dx.doi.org/10.1038/nature05864
  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2007; 2:e1210; PMID:18030344; http://dx.doi.org/10.1371/journal.pone.0001210
  • Drury GE, Dowle AA, Ashford DA, Waterworth WM, Thomas J, West CE. Dynamics of plant histone modifications in response to DNA damage. Biochem J 2012; 445:393-401; PMID:22574698; http://dx.doi.org/10.1042/BJ20111956
  • Yamane Y, Kashino Y, Koike H, Satoh K. Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynthesis Res 1998; 57:51-9; http://dx.doi.org/10.1023/A :1006019102619
  • De Ronde JA, Cress WA, Krüger GH, Strasser RJ, Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 2004; 161:1211-24; PMID:15602813; http://dx.doi.org/10.1016/j.jplph.2004.01.014
  • Mathur S, Mehta P, Jajoo A. Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol Mol Biol Plants 2013; 19:179-88; PMID:24431485; http://dx.doi.org/10.1007/s12298-012-0151-5
  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 2007; 143:629-38; PMID:17142484; http://dx.doi.org/10.1104/pp.106.090712
  • Heckathorn SA, Coleman JS, Hallberg RL. Recovery of net CO2 assimilation after heat stress is correlated with recovery of oxygen-evolving-complex proteins in Zea mays L. Photosynthetica 1998; 34:13-20; http://dx.doi.org/10.1023/A :1006899314677
  • Gazanchian A, Hajheidari M, Sima NK, Salekdeh GH. Proteome response of Elymus elongatum to severe water stress and recovery. J Exp Bot 2007; 58:291-300; PMID:17210992; http://dx.doi.org/10.1093/jxb/erl226
  • Tóth SZ, Schansker G, Kissimon J, Kovács L, Garab G, Strasser RJ. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol 2005; 162:181-94.
  • Bukhov N, Wiese C, Neimanis S, Heber U. Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynthesis Res 1999; 59:81-93; http://dx.doi.org/10.1023/A :1006149317411.
  • Vasilikiotis C, Melis A. Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci U S A 1994; 91:7222-6; PMID:11607488; http://dx.doi.org/10.1073/pnas.91.15.7222
  • Crafts-Brandner SJ, Salvucci ME. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci U S A 2000; 97:13430-5; PMID:11069297; http://dx.doi.org/10.1073/pnas.230451497
  • Crafts-Brandner SJ, Law RD. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 2000; 212:67-74; PMID:11219585; http://dx.doi.org/10.1007/s004250000364
  • El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiology 2004; 24:729-36; PMID:15123444; http://dx.doi.org/10.1093/treephys/24.7.729
  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 2000; 43:103-11; PMID:10949377; http://dx.doi.org/10.1023/A :1006408712416
  • Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation. Nature 1996; 384:557-60; http://dx.doi.org/10.1038/384557a0
  • Weis E. Reversible heat-inactivation of the calvin cycle: A possible mechanism of the temperature regulation of photosynthesis. Planta 1981; 151:33-9; PMID:24301667; http://dx.doi.org/10.1007/BF00384234
  • Rodriguez P. Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol 1998; 38:919-27; PMID:9869399; http://dx.doi.org/10.1023/A :1006054607850
  • Kim SG, Kim ST, Wang Y, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY. Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiol Plant 2010; 138:1-9; PMID:19825006; http://dx.doi.org/10.1111/j.1399-3054.2009.01290.x
  • Jaeck E, Dumas B, Geoffroy P, Favet N, Inzé D, Van Montagu M, Fritig B, Legrand M. Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant Microbe Interact 1992; 5:294-300; PMID:1515665; http://dx.doi.org/10.1094/MPMI-5-294
  • Pellegrini L, Geoffroy P, Fritig B, Legrand M. Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment. Plant Physiol 1993; 103:509-17.
  • Maury S, Geoffroy P, Legrand M. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. Plant Physiol 1999; 121:215-24; PMID:10482677; http://dx.doi.org/10.1104/pp.121.1.215
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian J Biochem Physiol 1959; 37:911-7; PMID:13671378; http://dx.doi.org/10.1139/o59-099
  • Robbins ML, Roy A, Wang P-H, Gaffoor I, Sekhon RS, de O, Buanafina MM, Rohila JS, Chopra S. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Prot 2013; 93:254-75; PMID:23811284; http://dx.doi.org/10.1016/j.jprot.2013.06.018
  • Lacerda AEB, Kanashiro M, Sebbenn AM. Effects of selective logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. Forest Ecol Manag 2008; 255:1034-43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.