1,258
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

, , , , &
Article: e990847 | Received 01 Oct 2014, Accepted 15 Oct 2014, Published online: 21 Apr 2015

References

  • Lim PO, Kim HJ, Nam HG Leaf senescence. Ann Rev Plant Biol 2007 58:115-136; PMID:17177638; http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316
  • Pennell R, Lamb C Programmed Cell Death in Plants. Plant Cell 1997 9:1157-1168; PMID:12237381; http://dx.doi.org/10.1105/tpc.9.7.1157
  • Jones AM Programmed cell death in development and defense. Plant Physiol 2001 125:94-97; PMID:11154305
  • Chen YA, Scheller RH SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001 2:98-106; PMID:11252968; http://dx.doi.org/10.1038/35052017
  • Lev S, Ben Halevy D, Peretti D, Dahan N The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 2008 18:282-290; PMID:18468439; http://dx.doi.org/10.1016/j.tcb.2008.03.006
  • Skehel PA, Martin KC, Kandel ER, Bartsch D A VAMP-Binding Protein from Aplysia Required for Neurotransmitter Release. Science 1995 269:1580-1583; PMID:7667638; http://dx.doi.org/10.1126/science.7667638
  • Weir ML, Xie H, Klip A, Trimble WS VAP-A binds promiscuously to both v- and tSNAREs. Biochem Biophys Res Commun 2001 286:616-621; PMID:11511104; http://dx.doi.org/10.1006/bbrc.2001.5437
  • Soussan L, Burakov D, Daniels MP, Toister-Achituv M, Porat A, Elazar Z. ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. J Cell Biol 1999 146:301-311; http://dx.doi.org/10.1083/jcb.146.2.301
  • Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT. Structural basis of FFAT motif-mediated ER targeting. Structure 2005 13:1035-1045; http://dx.doi.org/10.1016/j.str.2005.04.010
  • Wyles JP, McMaster CR, Ridgway ND Vesicle-associated membrane protein-associated protein-A VAP-A interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J Biol Chem 2002 277:29908-29918; PMID:12023275; http://dx.doi.org/10.1074/jbc.M201191200
  • Wyles JP, Ridgway ND VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. Exp Cell Res 2004 297:533-547; PMID:15212954; http://dx.doi.org/10.1016/j.yexcr.2004.03.052
  • Lehto M, Hynynen R, Karjalainen K, Kuismanen E, Hyvärinen K, Olkkonen VM. Targeting of OSBP-related protein 3 ORP3 to endoplasmic reticulum and plasma membrane is controlled by multiple determinants. Exp Cell Res 2005 310:445-462; PMID:16143324; http://dx.doi.org/10.1016/j.yexcr.2005.08.003
  • Kawano M, Kumagai K, Nishijima M, Hanada K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 2006 281:30279-30288; PMID:16895911; http://dx.doi.org/10.1074/jbc.M605032200
  • Tuuf J, Wistbacka L, Mattjus P. The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A. Biochem Biophys Res Commun 2009 388:395-399; PMID:19665998; http://dx.doi.org/10.1016/j.bbrc.2009.08.023
  • Amarilio R, Ramachandran S, Sabanay H, Lev S. Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. J Biol Chem 2005 280:5934-5944; PMID:15545272; http://dx.doi.org/10.1074/jbc.M409566200
  • Sutter J, Campanoni P. Setting SNAREs in a Different Wood. Traffic 2006 7:627-638; PMID:16683913; http://dx.doi.org/10.1111/j.1600-0854.2006.00414.x
  • Laurent F, Labesse G, De Wit P. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem Biophys Res Commun 2000 270:286-292; PMID:10733941; http://dx.doi.org/10.1006/bbrc.2000.2387
  • Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J 2009 58:817-830; PMID:19207211; http://dx.doi.org/10.1111/j.1365-313X.2009.03815.x
  • Petersen NHT, Joensen J, McKinney L V, Brodersen P, Petersen M, Hofius D, Mundy J. Identification of proteins interacting with Arabidopsis ACD11. Plant Physiol 2009 166:661-666; http://dx.doi.org/10.1016/j.jplph.2008.08.003
  • Oufattole M, Park H, Poxleitner M, Jiang L, Rogers JC. Selective Membrane Protein Internalization Accompanies Movement from the Endoplasmic Reticulum to the Protein Storage Vacuole Pathway in Arabidopsis. Plant Cell 2005 17:3066-3080; PMID:16227454; http://dx.doi.org/10.1105/tpc.105.035212
  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PloS One 2007 2:e718; PMID:17684564; http://dx.doi.org/10.1371/journal.pone.0000718
  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nature Cell Biol 2011 13:853-859; PMID:21666683; http://dx.doi.org/10.1038/ncb2270
  • Ueda T, Uemura T, Sato MH, Nakano A Functional differentiation of endosomes in Arabidopsis cells. Plant J  2004 40:783-789; http://dx.doi.org/10.1111/j.1365-313X.2004.02249.x
  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct and Funct 2004 29:49-65; http://dx.doi.org/10.1247/csf.29.49
  • Simeonova E, Sikora A, Charzyńska M, Mostowska A Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma 2000 214:93-101; http://dx.doi.org/10.1007/BF02524266
  • Yen C-H, Yang C-H Evidence for Programmed Cell Death during Leaf Senescence in Plants. Plant Cell Physiol 1998 39:922-927; http://dx.doi.org/10.1093/oxfordjournals.pcp.a029455
  • Cao J, Jiang F, Sodmergen, Cui K Time-course of programmed cell death during leaf senescence in Eucommia ulmoides. J Plant Res 2003 116:7-12; PMID:12605294
  • Obara K Direct Evidence of Active and Rapid Nuclear Degradation Triggered by Vacuole Rupture during Programmed Cell Death in Zinnia. Plant Physiol 2001 125:615-626; PMID:11161019; http://dx.doi.org/10.1104/pp.125.2.615
  • Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 2007 17:1030-1040; PMID:18059378; http://dx.doi.org/10.1038/cr.2007.100
  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jørgensen LB, Brown RE, Mundy J. Knockout of Arabidopsis encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 2002 16:490-502; PMID:11850411; http://dx.doi.org/10.1101/gad.218202
  • Wang D, Weaver ND, Kesarwani M, Dong X Induction of protein secretory pathway is required for systemic acquired resistance. Science 2005 308:1036-1040; PMID:15890886; http://dx.doi.org/10.1126/science.1108791
  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, et al. Co-option of a default secretory pathway for plant immune responses. Nature 2008 451:835-840; PMID:18273019; http://dx.doi.org/10.1038/nature06545
  • Collins NC, Thordal-christensen H, Lipka V SNARE-protein-mediated disease resistance at the plant cell wall. Nature 2003 312:310-312.
  • Yun HS, Kwaaitaal M, Kato N, Yi C, Park S, Sato MH, Schulze-Lefert P, Kwon C, et al. Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol Cells 2013 6:481-488; http://dx.doi.org/10.1007/s10059-013-2130-2
  • Kalde M, Nu TS, Findlay K, Peck SC The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 2007 10:11850-11855; http://dx.doi.org/10.1073/pnas.0701083104
  • El Kasmi F, Krause C, Hiller U, Stierhof Y-D, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot AA, Jürgens GSNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol Biol Cell 2013 24:1593-1601; PMID:23515225; http://dx.doi.org/10.1091/mbc.E13-02-0074
  • Hong W SNAREs and traffic. Biochim Biophys Acta 2005 1744:120-144; PMID:15893389; http://dx.doi.org/10.1016/j.bbamcr.2005.03.014
  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 2007 104:34-41; PMID:17697981; http://dx.doi.org/10.1263/jbb.104.34
  • Clough SJ, Bent AF Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J  1998 16:735-743; PMID:10069079; http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x
  • Li J-F, Park E, Von Arnim AG, Nebenführ A The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 2009 5:6; PMID:19457242; http://dx.doi.org/10.1186/1746-4811-5-6
  • Wintermans JFGM, De Mots A Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim Biophys Acta 1965 109:448-453; PMID:5867546; http://dx.doi.org/10.1016/0926-6585(65)90170-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.