3,606
Views
70
CrossRef citations to date
0
Altmetric
Reviews

Cadherins and catenins in dendrite and synapse morphogenesis

, &
Pages 202-213 | Received 30 Oct 2014, Accepted 02 Dec 2014, Published online: 27 Apr 2015

References

  • Deans, MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 2011; 71:820-32; PMID:21903076; http://dx.doi.org/10.1016/j.neuron.2011.06.026 S0896-6273(11)00556-3 [pii]
  • Matsunaga E, Nambu S, Oka M, Iriki A. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey. J Comp Neurol 2013; 521:4027-60; PMID:23784870; http://dx.doi.org/10.1002/cne.23389
  • Li Y, Xiao H, Chiou TT, Jin H, Bonhomme B, Miralles CP, Pinal N, Ali R, Chen WV, Maniatis T, De Blas AL, et al. Molecular and functional interaction between protocadherin-gammaC5 and GABAA receptors. J Neurosci 2012; 32:11780-97; PMID:22915120; http://dx.doi.org/10.1523/JNEUROSCI.0969- 12.2012 32/34/11780 [pii]
  • McLachlan IG, Heiman MG. Shaping dendrites with machinery borrowed from epithelia. Curr Opin Neurobiol 2013; 23:1005-10; PMID:23871793; http://dx.doi.org/10.1016/j.conb.2013.06.011 S0959-4388(13)00130-X [pii]
  • Hirano S, Takeichi M. Cadherins in brain morphogenesis and wiring. Physiol Rev 2012; 92:597-634; PMID:22535893; http://dx.doi.org/10.1152/physrev.00014.2011 92/2/597 [pii] (2012)
  • Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 2014; 15:397-410; PMID:24824068; http://dx.doi.org/10.1038/nrm3802 nrm3802 [pii]
  • Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8:11-20; PMID:17133224; nrn2043 [pii] http://dx.doi.org/10.1038/nrn2043
  • Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 2009; 1:a003053; http://dx.doi.org/10.1101/cshperspect.a003053
  • Troyanovsky RB, Sokolov E, Troyanovsky SM. Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 2003; 23:7965-72
  • Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J, Vendome J, Ahlsen G, Carroll KJ, Price SR, Honig B, Shapiro L et al. Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 2010; 17:348-57; PMID:20190754; http://dx.doi.org/10.1038/nsmb.1784 nsmb.1784 [pii]
  • Brasch J, Harrison OJ, Honig B, Shapiro L. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 2012; 22:299-310; doi:10.1016/j.tcb.2012.03.004 S0962-8924(12)00052-9 [pii]
  • Batlle E, Wilkinson DG. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb Perspect Biol 2012; 4:a008227; http://dx.doi.org/10.1101/cshperspect.a008227 a008227 [pii] 4/1/a008227 [pii]
  • Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci U S A 2009; 106:11594-9; PMID:19553217; http://dx.doi.org/10.1073/pnas.0905349106 0905349106 [pii]
  • Ounkomol C, Yamada S, Heinrich V. Single-cell adhesion tests against functionalized microspheres arrayed on AFM cantilevers confirm heterophilic E- and N-cadherin binding. Biophys J 2010; 99:L100-102; PMID:21156120; http://dx.doi.org/10.1016/j.bpj.2010.11.013 S0006-3495(10)01382-2 [pii]
  • Shimoyama Y, Tsujimoto G, Kitajima M, Natori M. Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 2000; 349:159-67; PMID:10861224
  • Wu Q, Maniatis T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc Natl Acad Sci U S A 2000; 97:3124-9; PMID:10716726; http://dx.doi.org/10.1073/pnas.060027397 060027397 [pii]
  • Schreiner D, Weiner JA. Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 2010; 107:14893-8; http://dx.doi.org/10.1073/pnas.1004526107 1004526107 [pii]
  • Kim SY, Yasuda S, Tanaka H, Yamagata K, Kim H. Non-clustered protocadherin. Cell Adh Migr 2011; 5:97-105; PMID:21173574; http://dx.doi.org/ 14374 [pii]
  • Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 1996; 135:767-79.
  • Arikkath J, Reichardt LF. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 2008; 31:487-94; doi:10.1016/j.tins.2008.07.001 S0166-2236(08)00166-5 [pii]
  • Redies C, Inuzuka H, Takeichi M. Restricted expression of N- and R-cadherin on neurites of the developing chicken CNS. J Neurosci 1992; 12:3525-34
  • Bozdagi O, Shan W, Tanaka H, Benson DL, Huntley GW. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 2000; 28:245-59; http://dx.doi.org/ S0896-6273(00)00100-8 [pii]
  • Fannon AM. Colman DR. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 1996; 17:423-34; http://dx.doi.org/ S0896-6273(00)80175-0 [pii]
  • Manabe, T, Togashi H, Uchida N, Suzuki SC, Hayakawa Y, Yamamoto M, Yoda H, Miyakawa T, Takeichi M, Chisaka O. Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol Cell Neurosci 2000; 15:534-46; http://dx.doi.org/10.1006/mcne.2000.0849 S1044-7431(00)90849-2 [pii]
  • Williams, ME, Wilke SA, Daggett A, Davis E, Otto S, Ravi D, Ripley B, Bushong EA, Ellisman MH, Klein G, et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 2011; 71:640-55; http://dx.doi.org/10.1016/j.neuron.2011.06.019 S0896-6273(11)00547-2 [pii]
  • Benson DL, Tanaka H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci 1998; 18:6892-904; PMID:9712659
  • Ozawa M. Baribault H. Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8:1711-17
  • Drees F. Pokutta S. Yamada S. Nelson WJ. Weis WI. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 2005; 123:903-15; http://dx.doi.org/ S0092-8674(05)00975-X [pii] 10.1016/j.cell.2005.09.021
  • Yamada S. Pokutta S. Drees F. Weis WI. Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123:889-901; http://dx.doi.org/ S0092-8674(05)00974-8 [pii] 10.1016/j.cell.2005.09.020
  • Benjamin JM, Kwiatkowski AV, Yang C, Korobova F, Pokutta S, Svitkina T, Weis WI, Nelson WJ. AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell-cell adhesion. J Cell Biol 2010; 189:339-52; http://dx.doi.org/10.1083/jcb.200910041 jcb.200910041 [pii]
  • Heuberger J. Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915; http://dx.doi.org/10.1101/cshperspect.a002915
  • Carnahan RH. Rokas A. Gaucher EA. Reynolds AB. The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 2010; 5:e15747; http://dx.doi.org/10.1371/journal.pone.0015747
  • Maiden SL. Hardin J. The secret life of alpha-catenin: moonlighting in morphogenesis. J Cell Biol 2011; 195, 543-52; http://dx.doi.org/10.1083/jcb.201103106 jcb.201103106 [pii]
  • Desai, R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U. Monomeric alpha-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 2013; 15, 261-273; http://dx.doi.org/10.1038/ncb2685 ncb2685 [pii]
  • Bekirov IH, Nagy V, Svoronos A, Huntley GW, Benson DL. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus 2008; 18:349-363; http://dx.doi.org/10.1002/hipo.20395
  • Yu X, Malenka RC. Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 2003; 6, 1169-1177; http://dx.doi.org/10.1038/nn1132 nn1132 [pii]
  • Tan ZJ, Peng Y, Song HL, Zheng JJ, Yu, X. N-cadherin-dependent neuron-neuron interaction is required for the maintenance of activity-induced dendrite growth. Proc Natl Acad Sci U S A 2010; 107, 9873-78; http://dx.doi.org/10.1073/pnas.1003480107 1003480107 [pii]
  • Kadowaki M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 2007; 304, 22-33; http://dx.doi.org/ S0012-1606(06)01432-1 [pii] 10.1016/j.ydbio.2006.12.014
  • Elia LP, Yamamoto M, Zang K, Reichardt LF. p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 2006; 51, 43-56; http://dx.doi.org/ S0896-6273(06)00410-7 [pii] 10.1016/j.neuron.2006.05.018
  • Arikkath, J, Israely I, Tao Y, Mei L, Liu X, Reichardt LF. Erbin controls dendritic morphogenesis by regulating localization of delta-catenin. J Neurosci 2008; 28:7047-56; PMID:18614673; http://dx.doi.org/10.1523/JNEUROSCI.0451-08.2008 28/28/7047 [pii]
  • Martinez MC, Ochiishi T, Majewski M, Kosik KS. Dual regulation of neuronal morphogenesis by a delta-catenin-cortactin complex and Rho. J Cell Biol 2003; 162:99-111; PMID:12835311; http://dx.doi.org/10.1083/jcb.200211025 jcb.200211025 [pii]
  • Davis MA, Ireton RC, Reynolds AB. A core function for p120-catenin in cadherin turnover. J Cell Biol 2003; 163:525-534; PMID:14610055; http://dx.doi.org/10.1083/jcb.200307111 jcb.200307111 [pii]
  • de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47-58; PMID:18075254; http://dx.doi.org/ 000109851 [pii] 10.1159/000109851
  • Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB. Inhibition of RhoA by p120 catenin. Nat Cell Biol 2000; 2, 637-644; http://dx.doi.org/10.1038/35023588
  • Abu-Elneel K, Ochiishi T, Medina M, Remedi M, Gastaldi L, Caceres A, Kosik KS. A delta-catenin signaling pathway leading to dendritic protrusions. J Biol Chem 2008; 283:32781-91; http://dx.doi.org/10.1074/jbc.M804688200 M804688200 [pii]
  • Yam PT, Pincus Z, Gupta GD, Bashkurov M, Charron F, Pelletier L, Colman DR, N-cadherin relocalizes from the periphery to the center of the synapse after transient synaptic stimulation in hippocampal neurons. PLoS One 2013; 8, e79679; http://dx.doi.org/10.1371/journal.pone.0079679 PONE-D-13-23642 [pii]
  • Togashi H. Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron 2002; 35:77-89; http://dx.doi.org/ S0896627302007481 [pii]
  • Nikitczuk JS. Patil SB, Matikainen-Ankney BA, Scarpa J, Shapiro ML, Benson DL, Huntley GW. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus 2014; 24:943-62; http://dx.doi.org/10.1002/hipo.22282
  • Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, Lessmann V, Dresbach T, Gottmann K. Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 2010; 107:11116-21; http://dx.doi.org/10.1073/pnas.0914233107 0914233107 [pii]
  • Pielarski KN. van Stegen B, Andreyeva A, Nieweg K, Jüngling K, Redies C, Gottmann K. Asymmetric N-cadherin expression results in synapse dysfunction, synapse elimination, and axon retraction in cultured mouse neurons. PLoS One 2013; 8, e54105; http://dx.doi.org/10.1371/journal.pone.0054105 PONE-D-12-24919 [pii]
  • Wang X, Cahill ME, Werner CT, Christoffel DJ, Golden SA, Xie Z, Loweth JA, Marinelli M, Russo SJ, Penzes P, et al. Kalirin-7 mediates cocaine-induced AMPA receptor and spine plasticity, enabling incentive sensitization. J Neurosci 2013; 33:11012-22; http://dx.doi.org/10.1523/JNEUROSCI.1097-13.2013 33/27/11012 [pii]
  • Mysore SP, Tai CY, Schuman EM. Effects of N-cadherin disruption on spine morphological dynamics. Front Cell Neurosci 2007; 1, 1; http://dx.doi.org/10.3389/neuro.03.001.2007
  • Mendez P, De Roo M, Poglia L, Klauser P, Muller D. N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol 2010; 189:589-600; http://dx.doi.org/10.1083/jcb.201003007 jcb.201003007 [pii]
  • Reines A, Bernier LP, McAdam R, Belkaid W, Shan W, Koch AW, Séguéla P, Colman DR, Dhaunchak AS. N-cadherin prodomain processing regulates synaptogenesis. J Neurosci 2012; 32:6323-34; http://dx.doi.org/10.1523/JNEUROSCI.0916-12.2012 32/18/6323 [pii]
  • Fiederling A, Ewert R, Andreyeva A, Jungling K, Gottmann K. E-cadherin is required at GABAergic synapses in cultured cortical neurons. Neurosci Lett 2011; 501:167-72; http://dx.doi.org/10.1016/j.neulet.2011.07.009 S0304-3940(11)01042-1 [pii]
  • Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC, Zhu L, Brass LF, Chen C, Greenberg ME. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 2007; 53:217-32; http://dx.doi.org/ S0896-6273(06)00997-4 [pii] 10.1016/j.neuron.2006.12.012
  • Kuwako K, Nishimoto Y, Kawase S, Okano HJ, Okano H. Cadherin-7 regulates mossy fiber connectivity in the cerebellum. Cell Rep 2014; 9, 311-23; PMID:25284782; http://dx.doi.org/; http://dx.doi.org/10.1016/j.celrep.2014.08.063 S2211-1247(14)00739-6 [pii]
  • Aiga M, Levinson JN, Bamji SX. N-cadherin and neuroligins cooperate to regulate synapse formation in hippocampal cultures. J Biol Chem 2011; 286:851-58; http://dx.doi.org/ 10.176305.[pii]
  • Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, et al. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 2007; 56:456-71; http://dx.doi.org/ S0896-6273(07)00663-0 [pii] 10.1016/j.neuron.2007.08.020
  • Taylor AM, Wu J, Tai HC, Schuman EM. Axonal translation of beta-catenin regulates synaptic vesicle dynamics. J Neurosci 2013; 33:5584-89; http://dx.doi.org/10.1523/JNEUROSCI.2944-12.2013 33/13/5584 [pii]
  • Bamji SX, Shimazu K, Kimes N, Huelsken J, Birchmeier W, Lu B, Reichardt LF. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 2003; 40:719-31; http://dx.doi.org/ S0896627303007189 [pii]
  • Sun Y, Aiga M, Yoshida E, Humbert PO, Bamji SX. Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell 2009; 20:3390-3400; http://dx.doi.org/10.1091/mbc.E08-12-1172 E08-12-1172 [pii]
  • Okuda T, Yu LM, Cingolani LA, Kemler R, Goda Y. beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc Natl Acad Sci U S A 2007; 104:13479-13484; http://dx.doi.org/ 0702334104 [pii] 10.1073/pnas.0702334104
  • Abe K, Chisaka O, Van Roy F, Takeichi M. Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci 2004; 7, 357-363; http://dx.doi.org/10.1038/nn1212 nn1212 [pii]
  • Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci 2007; 27:8505-8516; http://dx.doi.org/ 27/32/8505 [pii] 10.1523/JNEUROSCI.1395-07.2007
  • Ochiishi T, Futai K, Okamoto K, Kameyama K, Kosik KS. Regulation of AMPA receptor trafficking by delta-catenin. Mol Cell Neurosci 2008; 39:499-507; http://dx.doi.org/10.1016/j.mcn.2008.06.002 S1044-7431(08)00155-3 [pii]
  • Jungling, K. Eulenburg V, Moore R, Kemler R, Lessmann V, Gottmann K. N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J Neurosci 2006; 26:6968-78; http://dx.doi.org/ 26/26/6968 [pii] 10.1523/JNEUROSCI.1013-06.2006
  • Okamura, K. Tanaka H, Yagita Y, Saeki Y, Taguchi A, Hiraoka Y, Zeng LH, Colman DR, Miki N. Cadherin activity is required for activity-induced spine remodeling. J Cell Biol 2004; 167:961-72; http://dx.doi.org/ jcb.200406030 [pii] 10.1083/jcb.200406030
  • Bozdagi O, Wang XB, Nikitczuk JS, Anderson TR, Bloss EB, Radice GL, Zhou Q, Benson DL, Huntley GW. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J Neurosci 2010; 30:9984-89; http://dx.doi.org/10.1523/JNEUROSCI.1223-10.2010 30/30/9984 [pii]
  • Tai CY, Mysore SP, Chiu C, Schuman EM. Activity-regulated N-cadherin endocytosis. Neuron 2007; 54:771-785; http://dx.doi.org/ S0896-6273(07)00347-9 [pii] 10.1016/j.neuron.2007.05.013
  • Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000; 25:93-107; http://dx.doi.org/ S0896-6273(00)80874-0 [pii]
  • Murase S, Mosser E, Schuman EM. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 2002; 35:91-105; http://dx.doi.org/ S089662730200764X [pii]
  • Brigidi GS, Sun Y, Beccano-Kelly D, Pitman K, Mobasser M, Borgland SL, Milnerwood AJ, Bamji SX. Palmitoylation of delta-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32; http://dx.doi.org/10.1038/nn.3657 nn.3657 [pii]
  • Israely, I. Costa RM, Xie CW, Silva AJ, Kosik KS, Liu X, Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Curr Biol 2004; 14:1657-63; http://dx.doi.org/10.1016/j.cub.2004.08.065 S0960982204006761 [pii]
  • Mills F, Bartlett TE, Dissing-Olesen L, Wisniewska MB, Kuznicki J, Macvicar BA, Wang YT, Bamji SX. Cognitive flexibility and long-term depression (LTD) are impaired following beta-catenin stabilization in vivo. Proc Natl Acad Sci U S A 2014; 111:8631-36; http://dx.doi.org/10.1073/pnas.1404670111 14046-70111 [pii]
  • Drachman DA, Do we have brain to spare? Neurology 2005; 64:2004-05; http://dx.doi.org/ 64/12/2004 [pii] 10.1212/01.WNL.0000166914.38327.BB
  • Medina M, Marinescu RC, Overhauser J, Kosik KS. Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics 2000; 63:157-64; http://dx.doi.org/10.1006/geno.1999.6090 S0888-7543(99)96090-1 [pii]
  • Bacchelli, E, Ceroni F, Pinto D, Lomartire S, Giannandrea M, D'Adamo P, Bonora E, Parchi P, Tancredi R, Battaglia A, et al. A CTNNA3 compound heterozygous deletion implicates a role for alphaT-catenin in susceptibility to autism spectrum disorder. J Neurodev Disord 2014; 6, 17; http://dx.doi.org/10.1186/1866-1955-6-17 1866-1955-6-17 [pii]
  • Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH, Hilton H, Esapa C, Simon M, Buenavista MT, et al. Dominant beta-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest 2014; 124:1468-82; PMID:24614104; http://dx.doi.org/10.1172/JCI70372 70372 [pii]
  • Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PM, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 2009; 459:528-33; PMID:19404256; http://dx.doi.org/10.1038/nature07999 nature07999 [pii]
  • Pagnamenta AT, Khan H, Walker S, Gerrelli D, Wing K, Bonaglia MC, Giorda R, Berney T, Mani E, Molteni M, et al. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet 2011; 48:48-54; PMID:20972252; http://dx.doi.org/10.1136/jmg.20.10.079426 jmg.20 10.079426.[pii]
  • Singh SM, Castellani C, O'Reilly R. Autism meets schizophrenia via cadherin pathway. Schizophr Res 2010; 116:293-94; http://dx.doi.org/10.1016/j.schres.2009.09.031 S0920-9964(09)00475-7 [pii]
  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13:558-569; http://dx.doi.org/10.1038/sj.mp.4002151 4002151 [pii]
  • Lydall GJ, Bass NJ, McQuillin A, Lawrence J, Anjorin A, Kandaswamy R, Pereira A, Guerrini I, Curtis D, Vine AE, et al. Confirmation of prior evidence of genetic susceptibility to alcoholism in a genome-wide association study of comorbid alcoholism and bipolar disorder. Psychiatr Genet 2011; 21:294-306; http://dx.doi.org/10.1097/YPG.0b013e32834915c2
  • Morrow EM, Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 2010; 49:1091-1104; http://dx.doi.org/10.1016/j.jaac.20.10.08.009 S0890-8567(10)00601-5 [pii]
  • Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, Narzisi G, Leotta A, et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74:285-99; http://dx.doi.org/10.1016/j.neuron.2012.04.009 S0896-6273(12)00340-6 [pii]
  • Anitha A, Thanseem I, Nakamura K, Yamada K, Iwayama Y, Toyota T, Iwata Y, Suzuki K, Sugiyama T, Tsujii M, et al. Protocadherin alpha (PCDHA) as a novel susceptibility gene for autism. J Psychiatry Neurosci 2013; 38:192-98; http://dx.doi.org/10.1503/jpn.120058.10.1503/jpn.120058. [pii]
  • Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ, Craddock N, Green E, Kirov G, Owen MJ, et al. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry 2006; 11:372-83; http://dx.doi.org/ 4001784 [pii] 10.1038/sj.mp.4001784
  • Neale BM, Medland S, Ripke S, Anney RJ, Asherson P, Buitelaar J, Franke B, Gill M, Kent L, Holmans P, et al. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49:906-20; http://dx.doi.org/10.1016/j.jaac.20.10.06.007 S0890-8567(10)00482-X [pii]
  • Chu TT, Liu Y. An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes. J Hum Genet 2010; 55:285-92; http://dx.doi.org/10.1038/jhg.20.10.24 jhg201024 [pii]
  • Bhalla K, Luo Y, Buchan T, Beachem MA, Guzauskas GF, Ladd S, Bratcher SJ, Schroer RJ, Balsamo J, DuPont BR, et al. Alterations in CDH15 and KIRREL3 in patients with mild to severe intellectual disability. Am J Hum Genet 2008; 83:703-13; http://dx.doi.org/10.1016/j.ajhg.2008.10.020 S0002-9297(08)00555-7 [pii]
  • Jun G, Moncaster JA, Koutras C, Seshadri S, Buros J, McKee AC, Levesque G, Wolf PA, St George-Hyslop P, Goldstein LE, et al. delta-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS One 2012; 7, e43728; http://dx.doi.org/10.1371/journal.pone.0043728 PONE-D-12-15379 [pii]
  • Asada-Utsugi M, Uemura K, Noda Y, Kuzuya A, Maesako M, Ando K, Kubota M, Watanabe K, Takahashi M, Kihara T, et al. N-cadherin enhances APP dimerization at the extracellular domain and modulates Abeta production. J Neurochem 2011; 119:354-63; PMID:21699541; http://dx.doi.org/10.1111/j.1471-4159.2011.07364.x
  • Andreyeva A, Nieweg K, Horstmann K, Klapper S, Müller-Schiffmann A, Korth C, Gottmann K. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-beta. Brain 2012; 135:2140-54; PMID:22637581; http://dx.doi.org/10.1093/brain/aws120 aws120 [pii]
  • Depienne C, LeGuern E. PCDH19-related infantile epileptic encephalopathy: an unusual X-linked inheritance disorder. Hum Mutat 2012; 33:627-34; PMID:22267240; http://dx.doi.org/10.1002/humu.22029
  • Dibbens LM, Kneen R, Bayly MA, Heron SE, Arsov T, Damiano JA, Desai T, Gibbs J, McKenzie F, Mulley JC, et al. Recurrence risk of epilepsy and mental retardation in females due to parental mosaicism of PCDH19 mutations. Neurology 2011; 76:1514-19; PMID:21519002; http://dx.doi.org/10.1212/WNL.0b013e318217e7b6 76/17/1514 [pii]
  • Nagaoka T, Ohashi R, Inutsuka A, Sakai S, Fujisawa N, Yokoyama M, Huang YH, Igarashi M, Kishi M. The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin. Cell Rep 2014; 6, 916-27; PMID:24582966; http://dx.doi.org/10.1016/j.celrep.2014.01.044 S2211-1247(14)00078-3 [pii]
  • Tanaka H, Takafuji K, Taguchi A, Wiriyasermkul P, Ohgaki R, Nagamori S, Suh PG, Kanai Y. Linkage of N-cadherin to multiple cytoskeletal elements revealed by a proteomic approach in hippocampal neurons. Neurochem Int 2012; 61:240-50; PMID:22609377; http://dx.doi.org/10.1016/j.neuint.2012.05.008 S0197-0186(12)00168-4 [pii]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.