2,597
Views
16
CrossRef citations to date
0
Altmetric
Reports

Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells

, , &
Pages 199-211 | Received 15 Aug 2014, Accepted 02 Oct 2014, Published online: 14 Jan 2015

References

  • Leung SO, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB, Hansen HJ. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol 1995; 32:1413-27; PMID:8643111; http://dx.doi.org/10.1016/0161-5890(95)00080-1
  • Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, Ashe M, Schuster SJ, Wegener WA, Hansen HJ, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma:phase I/II clinical trial results. Clin Cancer Res 2004; 10:5327-34; PMID:15328168; http://dx.doi.org/10.1158/1078-0432.CCR-04-0294
  • Leonard JP, Schuster SJ, Emmanouilides C, Couture F, Teoh N, Wegener WA, Coleman M, Goldenberg DM. Durable complete responses from therapy with epratuzumab and rituximab:final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer 2009; 113:2714-23; http://dx.doi.org/10.1002/cncr.23890
  • Raetz EA, Cairo MS, Borowitz MJ, Blaney SM, Krailo MD, Leil TA, Reid JM, Goldenberg DM, Wegener WA, Carroll WL, et al. Chemotherapy reintroduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse:a Children's Oncology Group pilot study. J Clin Oncol 2008; 26:3756-62; PMID:18669463; http://dx.doi.org/10.1200/JCO.2007.15.3528
  • Advani AS, McDonough S, Coutre S, Wood B, Radich J, Mims M, O’Donnell M, Elkins S, Becker M, Othus M, et al. SWOG S0910:a phase 2 trial of clofarabine/cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 2014; 165:504-9; PMID:24579885; http://dx.doi.org/10.1111/bjh.12778
  • Wallace DJ, Goldenberg DM. Epratuzumab for systemic lupus erythematosus. Lupus 2013; 22:400-5; PMID:23553783; http://dx.doi.org/10.1177/0961203312469692
  • Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Houssiau F, Tak PP, Isenberg DA, Kelley L, et al. Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic erythematosus:results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 2013; 52:1313-22; PMID:23542611; http://dx.doi.org/10.1093/rheumatology/ket129
  • Strand V, Petri M, Kalunian K, Gordon C, Wallace DJ, Hobbs K, Kelley L, Kilgallen B, Wegener WA, Goldenberg DM. Epratuzumab for patients with moderate to severe flaring SLE:health-related quality of life outcomes and corticosteroid use in the randomized controlled ALLEVIATE trials and extension study SL0006. Rheumatology (Oxford) 2014; 53:502-11; PMID:24273022; http://dx.doi.org/10.1093/rheumatology/ket378
  • Steinfeld SD, Tant L, Burmester GR, Teoh NKW, Wegener WA, Goldenberg DM, Prodier O. Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren's syndrome:an open-label phase I/II study. Arthritis Res Ther 2006; 8:R129; PMID:16859536; http://dx.doi.org/10.1186/ar2018
  • O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009; 30:240-8; http://dx.doi.org/10.1016/j.tips.2009.02.005
  • Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 1997; 15:481-504; PMID:9143697; http://dx.doi.org/10.1146/annurev.immunol.15.1.481
  • Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 1995; 155:3368-76; PMID:7561031
  • Wilson GL, Fox CH, Fauci AS, Kehrl JH. cDNA cloning of the B cell membrane protein CD22:a mediator of B-B cell interactions. J Exp Med 1991; 173:137-46; PMID:1985119; http://dx.doi.org/10.1084/jem.173.1.137
  • Ravetch JV, Lanier LL. Immune inhibitory receptors. Science 2000; 290:84-9; PMID:11021804; http://dx.doi.org/10.1126/science.290.5489.84
  • Sato S, Tuscano JM, Inoaki M, Tedder TF. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 1998; 10:287-97; PMID:9695185; http://dx.doi.org/10.1006/smim.1998.0121
  • Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72:395-447; PMID:12651740; http://dx.doi.org/10.1146/annurev.biochem.72.121801.161800
  • John B, Herrin BR, Raman C, Wang YN, Bobbitt KR, Brody BA, Justement LB. The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adaptor protein, via tyrosine-dependent interaction. J Immunol 2003; 170:3534-43; PMID:12646615; http://dx.doi.org/10.4049/jimmunol.170.7.3534
  • Shan D, Press OW. Constitutive endocytosis and degradation of CD22 by human B cells. J Immunol 1995; 154:4466-75; PMID:7722303
  • O’Reilly MK, Tian H, Paulson JC. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. J Immunol 2011; 186:1554-63; http://dx.doi.org/10.4049/jimmunol.1003005
  • Razi N, Varki A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci USA 1998; 95:7469-74; PMID:9636173; http://dx.doi.org/10.1073/pnas.95.13.7469
  • Engels P, Nojima Y, Rothstein D, Zhou LJ, Wilson GL, Kehrl JH, Tedder TF. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J Immunol 1993; 150:4719-32; PMID:7684411
  • Leprince C, Draves KE, Geahlen RL, Ledbetter JA, Clark EA. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc Natl Acad Sci USA 1993; 90:3236-40; PMID:8475064; http://dx.doi.org/10.1073/pnas.90.8.3236
  • Petri RJ, Schnetkamp PPM, Patel KD, Awasthi-Kalia M, Deans JP. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts:evidence towards a role in calcium regulation. J Immunol 2000; 165:1220-7; PMID:10903719; http://dx.doi.org/10.4049/jimmunol.165.3.1220
  • Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT. Inhibition of the B cell by CD22:a requirement for Lyn. J Exp Med 1998; 187:807-11; PMID:9480991; http://dx.doi.org/10.1084/jem.187.5.807
  • Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2002; 2:945-56; PMID:12461567; http://dx.doi.org/10.1038/nri955
  • Tuscano J, Engel P, Tedder TF, Kehr JH. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 1996; 87:4723-30; PMID:8639842
  • Pezzutto A, Dörken B, Moldenhauer G, Clark EA. Amplification of human B cell activation by a monoclonal antibody to the B cell-specific antigen CD22, Bp 130/140. J Immunol 1987; 138:98-103; PMID:3097151
  • Pezzutto A, Rabinovitch PS, Dörken B, Moldenhauer G, Clark EA. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J Immunol 1988; 140:1791-5; PMID:3257985
  • Nitschke L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol 2005; 17:290-7; PMID:15886119; http://dx.doi.org/10.1016/j.coi.2005.03.005
  • Dörner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 2006; 8:R74; PMID:16630358; http://dx.doi.org/10.1186/ar1942
  • Carnahan J, Stein R, Qu Z, Hess K, Cesano A, Hansen HJ, Goldenberg DM. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 2007; 44:1331-41; PMID:16814387; http://dx.doi.org/10.1016/j.molimm.2006.05.007
  • Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dörner T. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis 2008; 67:450-7; PMID:17673490; http://dx.doi.org/10.1136/ard.2007.075762
  • Daridon C, Blassfeld D, Reiter K, Mei HE, Giesecke C, Goldenberg DM, Hansen A, Hostmann A, Frolich D, Dӧrner T. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R204; PMID:21050432; http://dx.doi.org/10.1186/ar3179
  • Sieger N, Fleischer SJ, Mei HE, Reiter K, Shock A, Burmester GR, Daridon C, Dӧrner T. CD22 ligation inhibits downstream B-cell receptor signaling and Ca2+ flux upon activation. Arthritis Rheum 2013; 65:770-9; PMID:23233360; http://dx.doi.org/10.1002/art.37818
  • Rossi EA, Goldenberg DM, Michel R, Rossi DL, Wallace DJ, Chang CH. Trogocytosis of multiple B-cell surface markers by CD22-targeting epratuzumab. Blood 2013; 122:3020-9; PMID:23821660; http://dx.doi.org/10.1182/blood-2012-12-473744
  • Rossi EA, Chang CH, Goldenberg DM. Anti-CD22/CD20 bispecific antibody with enhanced trogocytosis for treatment of lupus. PLOS ONE, 2014; 9:e98315; http://dx.doi.org/10.1371/journal.pone.0098315
  • Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, Juan T, Talvenheimo J, Montestruque S, Sun J, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22:characterization of in vitro properties. Clin Cancer Res 2003; 9:3982S-90S; PMID:14506197
  • Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang CH. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 2008; 111:2211-9; PMID:18025153; http://dx.doi.org/10.1182/blood-2007-08-110072
  • Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 1995; 269:242-4; PMID:7618087; http://dx.doi.org/10.1126/science.7618087
  • Yu J, Sawada T, Adachi T, Gao X, Takematsu H, Kozutsumi Y, Ishida H, Kiso M, Tsubata T. Synthetic glycan ligand excludes CD22 from antigen receptor-containing lipid rafts. Biochem Biophys Res Commun 2007; 360:759-64; PMID:17631277; http://dx.doi.org/10.1016/j.bbrc.2007.06.110
  • Courtney AH, Puffer EB, Pontrello JK, Yang ZQ, Kiessling LL. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci USA 2009; 106:2500-5; PMID:19202057; http://dx.doi.org/10.1073/pnas.0807207106
  • Rudge EU, Cutler AJ, Pritchard NR, Smith KGC. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcgRII-mediated B cell suppression. J Exp Med 2002; 195:1079-85; PMID:11956299; http://dx.doi.org/10.1084/jem.20011435
  • Chan VWF, Lowell CA, DeFranco AL. Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr Biol 1998; 8:545-53; PMID:9601638; http://dx.doi.org/10.1016/S0960-9822(98)70223-4
  • Ishigami T, Kim K-M, Horiguchi Y, Higaki Y, Hata D, Heike T, Katamura K, Mayumi M, Mikawa H. Anti-IgM antibody-induced cell death in a human B lymphoma cell line, B104, represents a novel programmed cell death. J Immunol 1992; 148:360-8; PMID:1729359
  • O’Reilly MK, Collins BE, Han S, Liao L, Rillahan C, Kitov PI, Bundle DR, Paulson JC. Bifunctional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells. J Am Chem Soc 2008; 130:7736-46; http://dx.doi.org/10.1021/ja802008q
  • Abdu-Allah HHM, Tamanaka T, Yu J, Zhuoyuan L, Sadagopan M, Adachi T, Tsubata T, Kelm S, Ishida H, Kiso M. Design, synthesis, and structure-affinity relationships of novel series of sialosides as CD22-specific inhibitors. J Med Chem 2008; 51:6665-81; PMID:18841881; http://dx.doi.org/10.1021/jm8000696
  • Abdu-Allah HHM, Watanabe K, Completo GC, Sadagopan M, Hayashizaki K, Takaku C, Tamanaka T, Takematsu H, Kozutsumi Y, Paulson JC. CD22-antagonists with nanomolar potency:the synergistic effect of hydrophobic group at C-2 and C-9 of sialic acid scaffold. Bioorg Med Chem 2011; 19:1966-71; PMID:21349726; http://dx.doi.org/10.1016/j.bmc.2011.01.060
  • Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A, Paulson JC. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J Clin Invest 2013; 123:3074-83; PMID:23722906; http://dx.doi.org/10.1172/JCI69187
  • Hanasaki K, Varki A, Stamenkovic I, Bevilacqua MP. Cytokine-induced β-galactoside α-2,6-sialyltransferase in human endothelial cells mediates α2,6-sialylation of adhesion molecules and CD22 ligands. J Biol Chem 1994; 269:10637-43; PMID:8144653
  • Hanasaki K, Varki A, Powell LD. CD22-mediated cell adhesion to cytokine-activated human endothelial cells. Positive and negative regulation by α2-6-sialylation of cellular glycoproteins. J Biol Chem 1995; 270; 7533-42; PMID:7706300; http://dx.doi.org/10.1074/jbc.270.13.7533
  • Groger M, Sarmay G, Fiebiger E, Wolfe K, Petzelbauer P. Dermal microvascular endothelial cells express CD32 receptors in vivo and in vitro. J Immunol 1996;156:1549-56; PMID:8568259
  • Pan LF, Kreisle RA, Shi YD. Detection of Fcg receptors on human endothelial cells stimulated with cytokines tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-g). Clin Exp Immunol 1998; 112:533-8; PMID:9649226; http://dx.doi.org/10.1046/j.1365-2249.1998.00597.x
  • Walshe CA, Beers SA, French RR, Chan CH, Johnson PW, Packham GK, Glennie MJ, Cragg MS. Induction of cytosolic calcium flux by CD20 is dependent upon B cell antigen receptor signaling. J Biol Chem 2008; 83:16971-84; http://dx.doi.org/10.1074/jbc.M708459200
  • Geppert TD, Lipsky PE. Accessory cell independent proliferation of human T4 cells stimulated by immobilized monoclonal antibodies to CD3. J Biol Chem 1987; 138:1660-6.
  • Mateo V, Lagneaux L, Bron D, Brion G, Armant M, Delespesse G, Sarfati M. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med 1999; 5:1277-84; PMID:10545994; http://dx.doi.org/10.1038/15233
  • Watanabe S, Kagamu H, Yoshizawa H, Fujita N, Tanaka H, Tanaka J, Gejyo F. The duration of CD40 signaling directs biological ability of dendritic cells to induce antitumor immunity. J Immunol 2003; 171:5828-36; PMID:14634092; http://dx.doi.org/10.4049/jimmunol.171.11.5828
  • Chiu GNC, Edwards LA, Kapanen AI, Malinen MM, Dragowska WH, Warburton C, Chikh GG, Fang KY, Tans S, Sy J, et al. Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs. Mol Cancer Ther 2007; 6:844-55; PMID:17339368; http://dx.doi.org/10.1158/1535-7163.MCT-06-0761
  • Hertlein E, Triantafilou G, Sass EJ, Hessler JD, Zhang X, Jarjoura D, Lucas DM, Muthusamy N, Goldenberg DM, Lee RJ, et al. Milatuzumab immunoliposomes induce cell death in CLL by promoting accumulation of CD74 on the surface of B cells. Blood 2010; 116:2554-8; PMID:20574049; http://dx.doi.org/10.1182/blood-2009-11-253203
  • Wang J, Tian S, Petros RA, Napier ME, DeSimone JM. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 2010; 132:11306-13; PMID:20698697; http://dx.doi.org/10.1021/ja1043177
  • Gupta P, Goldenberg DM, Rossi EA, Chang CH. Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood 2010; 116:3258-67; PMID:20628151; http://dx.doi.org/10.1182/blood-2010-03-276857