6,110
Views
89
CrossRef citations to date
0
Altmetric
REVIEWS

Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

, , , &
Pages 579-593 | Received 31 Mar 2014, Accepted 30 Jul 2014, Published online: 03 Jan 2015

References

  • O'Brien JA, Lahue BJ, Caro JJ, Davidson DM. The emerging infectious challenge of Clostridium difficile–associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol 2007; 28:1219-27; PMID:17926270; http://dx.doi.org/10.1086/522676
  • Khanna S, Pardi DS, Aronson SL, Kammer PP, Orenstein R, St Sauver JL, Harmsen WS, Zinsmeister AR. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol 2012; 107:89-95; PMID:22108454; http://dx.doi.org/10.1038/ajg.2011.398
  • Rupnik M. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 2008; 32:541-55; PMID:18397287; http://dx.doi.org/10.1111/j.1574-6976.2008.00110.x
  • McDonald LC, Killgore GE, Thompson A, Owens RC, Kazakova SV, Sambol SP, Johnson S, Gerding DN. An epidemic, toxin gene–variant strain of Clostridium difficile. New Engl J Med 2005; 353:2433-41; PMID:16322603; http://dx.doi.org/10.1056/NEJMoa051590
  • Goorhuis A, Debast SB, van Leengoed LA, Harmanus C, Notermans DW, Bergwerff AA, Kuijper EJ. Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 2008; 46:1157; PMID:18326836; http://dx.doi.org/10.1128/JCM.01536-07
  • Spigaglia P, Barbanti F, Mastrantonio P, Brazier JS, Barbut F, Delmee M, Kuijper E, Poxton IR. Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol 2008; 57:784-9; PMID:18480338; http://dx.doi.org/10.1099/jmm.0.47738-0
  • Akerlund T, Persson I, Unemo M, Noren T, Svenungsson B, Wullt M, Burman LG. Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol 2008; 46:1530-3; PMID:18287318; http://dx.doi.org/10.1128/JCM.01964-07
  • Naggie S, Miller BA, Zuzak KB, Pence BW, Mayo AJ, Nicholson BP, Kutty PK, McDonald LC, Woods CW. A case-control study of community-associated Clostridium difficile infection: no role for proton pump inhibitors. Am J Med 2011; 124:276 e1-7; PMID:21396512; http://dx.doi.org/10.1016/j.amjmed.2010.10.013
  • Carter GP, Rood JI, Lyras D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 2012; 20:21-9; PMID:22154163; http://dx.doi.org/10.1016/j.tim.2011.11.003
  • Geric B, Carman RJ, Rupnik M, Genheimer CW, Sambol SP, Lyerly DM, Gerding DN, Johnson S. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis 2006; 193:1143-50; PMID:16544255; http://dx.doi.org/10.1086/501368
  • Braun V, Hundsberger T, Leukel P, Sauerborn M, Eichel-Streiber Cv. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 1996; 181:29-38; PMID:8973304; http://dx.doi.org/10.1016/S0378-1119(96)00398-8
  • Mani N, Dupuy B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 2001; 98:5844-9; PMID:11320220; http://dx.doi.org/10.1073/pnas.101126598
  • Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, Buckley AM, Antunes A, Kotsanas D, Jenkin GA, et al. The Anti-Sigma Factor TcdC Modulates Hypervirulence in an Epidemic BI/NAP1/027 Clinical Isolate of Clostridium difficile. PLoS Pathog 2011; 7:e1002317; PMID:22022270; http://dx.doi.org/10.1371/journal.ppat.1002317
  • Govind R, Dupuy B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog 2012; 8:e1002727; PMID:22685398; http://dx.doi.org/10.1371/journal.ppat.1002727
  • Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 2007; 64:1274-88; PMID:17542920; http://dx.doi.org/10.1111/j.1365-2958.2007.05739.x
  • Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 2012; 78:4683-90; PMID:22522680; http://dx.doi.org/10.1128/AEM.00249-12
  • Bakker D, Smits WK, Kuijper EJ, Corver J. TcdC does not significantly repress toxin expression in Clostridium difficile 630DeltaErm. PLoS One 2012; 7:e43247; PMID:22912837; http://dx.doi.org/10.1371/journal.pone.0043247
  • Olling A, Seehase S, Minton NP, Tatge H, Schroter S, Kohlscheen S, Pich A, Just I, Gerhard R. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. Microb Pathog 2012; 52:92-100; PMID:22107906; http://dx.doi.org/10.1016/j.micpath.2011.10.009
  • Brouwer MS, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun 2013; 4:2601; PMID:24131955; http://dx.doi.org/10.1038/ncomms3601
  • von Eichel-Streiber C, Laufenberg-Feldmann S, Sartingen S, Schulze J, Sauerborn M. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 1992; 233:260-8; PMID:1603068; http://dx.doi.org/10.1007/BF00587587
  • Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 2008; 16:222-9; PMID:18394902; http://dx.doi.org/10.1016/j.tim.2008.01.011
  • Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 2011; 9:487-98; PMID:21677684; http://dx.doi.org/10.1038/nrmicro2592
  • Papatheodorou P, Zamboglou C, Genisyuerek S, Guttenberg G, Aktories K. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS One 2010; 5:e10673; PMID:20498856; http://dx.doi.org/10.1371/journal.pone.0010673
  • Pruitt RN, Chambers MG, Ng KK, Ohi MD, Lacy DB. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 2010; 107:13467-72; PMID:20624955; http://dx.doi.org/10.1073/pnas.1002199107
  • Egerer M, Giesemann T, Herrmann C, Aktories K. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J Biol Chem 2009; 284:3389-95; PMID:19047051; http://dx.doi.org/10.1074/jbc.M806002200
  • Pruitt RN, Chagot B, Cover M, Chazin WJ, Spiller B, Lacy DB. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J Biol Chem 2009; 284:21934-40; PMID:19553670; http://dx.doi.org/10.1074/jbc.M109.018929
  • Jank T, Giesemann T, Aktories K. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 2007; 17:15R-22R; PMID:17237138; http://dx.doi.org/10.1093/glycob/cwm004
  • Gerhard R, Nottrott S, Schoentaube J, Tatge H, Olling A, Just I. Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells. J Med Microbiol 2008; 57:765-70; PMID:18480335; http://dx.doi.org/10.1099/jmm.0.47769-0
  • Ng J, Hirota SA, Gross O, Li Y, Ulke-Lemee A, Potentier MS, Schenck LP, Vilaysane A, Seamone ME, Feng H, et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 2010; 139:542-52, 52 e1-3; PMID:20398664; http://dx.doi.org/10.1053/j.gastro.2010.04.005
  • Madan R, Petri Jr WA. Immune responses to Clostridium difficile infection. Trends Mol Med 2012; 18:658-66; PMID:23084763; http://dx.doi.org/10.1016/j.molmed.2012.09.005
  • Pothoulakis C, Castagliuolo I, LaMont JT. Nerves and intestinal mast cells modulate responses to enterotoxins. News Physiol Sci 1998; 13:58-63; PMID:11390763;
  • Lanis JM, Barua S, Ballard JD. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog 2010; 6; PMID:20808849; http://dx.doi.org/10.1371/journal.ppat.1001061
  • Lanis JM, Heinlen LD, James JA, Ballard JD. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB. PLoS Pathog 2013; 9:e1003523; PMID:23935501; http://dx.doi.org/10.1371/journal.ppat.1003523
  • Lyerly DM, Saum KE, MacDonald DK, Wilkins TD. Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun 1985; 47:349-52; PMID:3917975;
  • Mitchell TJ, Ketley JM, Haslam SC, Stephen J, Burdon DW, Candy DC, Daniel R. Effect of toxin A and B of Clostridium difficile on rabbit ileum and colon. Gut 1986; 27:78-85; PMID:3949240; http://dx.doi.org/10.1136/gut.27.1.78
  • Kim PH, Iaconis JP, Rolfe RD. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun 1987; 55:2984-92; PMID:3679541;
  • Kyne L, Warny M, Qamar A, Kelly CP. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 2001; 357:189-93; PMID:11213096; http://dx.doi.org/10.1016/S0140-6736(00)03592-3
  • Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis 2007; 11:5-10; PMID:16857405; http://dx.doi.org/10.1016/j.ijid.2006.04.003
  • Savidge TC, Pan WH, Newman P, O'Brien M, Anton PM, Pothoulakis C. Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology 2003; 125:413-20; PMID:12891543; http://dx.doi.org/10.1016/S0016-5085(03)00902-8
  • Hamm EE, Voth DE, Ballard JD. Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication. Proc Natl Acad Sci U S A 2006; 103:14176-81; PMID:16966605; http://dx.doi.org/10.1073/pnas.0604725103
  • Steele J, Mukherjee J, Parry N, Tzipori S. Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease. J Infect Dis 2013; 207:323-30; PMID:23125448; http://dx.doi.org/10.1093/infdis/jis669
  • Lyras D, O’Connor JR, Howarth PK, Sambol SP, Carter GP, Phumoonna T, Poon R, Adams V, Vedantam G, Johnson S, et al. Toxin B is essential for virulence of Clostridium difficile. Nature 2009; 458:1176-9; PMID:19252482; http://dx.doi.org/10.1038/nature07822
  • Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. The role of toxin A and toxin B in Clostridium difficile infection. Nature 2010; 467:711-3; PMID:20844489; http://dx.doi.org/10.1038/nature09397
  • Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP. Importance of Toxin A, Toxin B, and CDT in Virulence of an Epidemic Clostridium difficile Strain. J Infect Dis 2013; 209:83-6; PMID:23935202; http://dx.doi.org/10.1093/infdis/jit426
  • Lowy I, Molrine DC, Leav BA, Blair BM, Baxter R, Gerding DN, Nichol G, Thomas WD, Jr., Leney M, Sloan S, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 2010; 362:197-205; PMID:20089970; http://dx.doi.org/10.1056/NEJMoa0907635
  • Roberts A, McGlashan J, Al-Abdulla I, Ling R, Denton H, Green S, Coxon R, Landon J, Shone C. Development and evaluation of an ovine antibody-based platform for treatment of Clostridium difficile infection. Infect Immun 2012; 80:875-82; PMID:22144483; http://dx.doi.org/10.1128/IAI.05684-11
  • Steele J, Sponseller J, Schmidt D, Cohen O, Tzipori S. Hyperimmune bovine colostrum for treatment of GI infections: a review and update on Clostridium difficile. Hum Vaccin Immunother 2013; 9:1565-8; PMID:23435084; http://dx.doi.org/10.4161/hv.24078
  • Greenberg RN, Marbury TC, Foglia G, Warny M. Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 2012; 30:2245-9; PMID:22306375; http://dx.doi.org/10.1016/j.vaccine.2012.01.065
  • Jin K, Wang S, Zhang C, Xiao Y, Lu S, Huang Z. Protective antibody responses against Clostridium difficile elicited by a DNA vaccine expressing the enzymatic domain of toxin B. Hum Vaccin Immunother 2013; 9:63-73; PMID:23143772; http://dx.doi.org/10.4161/hv.22434
  • Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, Cutting SM. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 2011; 79:2295-302; PMID:21482682; http://dx.doi.org/10.1128/IAI.00130-11
  • Seregin SS, Aldhamen YA, Rastall DP, Godbehere S, Amalfitano A. Adenovirus-based vaccination against Clostridium difficile toxin A allows for rapid humoral immunity and complete protection from toxin A lethal challenge in mice. Vaccine 2012; 30:1492-501; PMID:22200503; http://dx.doi.org/10.1016/j.vaccine.2011.12.064
  • Wang H, Sun X, Zhang Y, Li S, Chen K, Shi L, Nie W, Kumar R, Tzipori S, Wang J, et al. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infect Immun 2012; 80:2678-88; PMID:22615245; http://dx.doi.org/10.1128/IAI.00215-12
  • Tian JH, Fuhrmann SR, Kluepfel-Stahl S, Carman RJ, Ellingsworth L, Flyer DC. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine 2012; 30:4249-58; PMID:22537987; http://dx.doi.org/10.1016/j.vaccine.2012.04.045
  • Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt WD, Wehland J, Aktories K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 2009; 5:e1000626; PMID:19834554; http://dx.doi.org/10.1371/journal.ppat.1000626
  • Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F, Kudryashev M, Stahlberg H, Aktories K. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A 2014; 111:2313-8; PMID:24469807; http://dx.doi.org/10.1073/pnas.1311589111
  • Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 2000; 186:307-12; PMID:10802189; http://dx.doi.org/10.1111/j.1574-6968.2000.tb09122.x
  • Bacci S, Molbak K, Kjeldsen MK, Olsen KE. Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis 2011; 17:976-82; PMID:21749757; http://dx.doi.org/10.3201/eid/1706.101483
  • Popoff MR, Rubin EJ, Gill DM, Boquet P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 1988; 56:2299-306; PMID:3137166
  • Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004; 68:373-402; PMID:15353562; http://dx.doi.org/10.1128/MMBR.68.3.373-402.2004
  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff M. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 1997; 65:1402-7; PMID:9119480
  • Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O'Connor JR, Rood JI. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol 2007; 189:7290-301; PMID:17693517; http://dx.doi.org/10.1128/JB.00731-07
  • Perelle S, Scalzo S, Kochi S, Mock M, Popoff MR. Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins. FEMS Microbiol Lett 1997; 146:117-21; PMID:8997715; http://dx.doi.org/10.1111/j.1574-6968.1997.tb10180.x
  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 2011; 108:16422-7; PMID:21930894; http://dx.doi.org/10.1073/pnas.1109772108
  • Mesli S, Javorschi S, Berard AM, Landry M, Priddle H, Kivlichan D, Smith AJ, Yen FT, Bihain BE, Darmon M. Distribution of the lipolysis stimulated receptor in adult and embryonic murine tissues and lethality of LSR-/- embryos at 12.5 to 14.5 days of gestation. Eur J Biochem 2004; 271:3103-14; PMID:15265030; http://dx.doi.org/10.1111/j.1432-1033.2004.04223.x
  • Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun 2004; 72:3267-75; PMID:15155629; http://dx.doi.org/10.1128/IAI.72.6.3267-3275.2004
  • Blocker D, Behlke J, Aktories K, Barth H. Cellular uptake of the Clostridium perfringens binary iota-toxin. Infect Immun 2001; 69:2980-7; PMID:11292715; http://dx.doi.org/10.1128/IAI.69.5.2980-2987.2001
  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 2001; 69:6004-11; PMID:11553537; http://dx.doi.org/10.1128/IAI.69.10.6004-6011.2001
  • Aktories K, Lang AE, Schwan C, Mannherz HG. Actin as target for modification by bacterial protein toxins. Febs J 2011; 278:4526-43; PMID:21466657; http://dx.doi.org/10.1111/j.1742-4658.2011.08113.x
  • Barbut F, Gariazzo B, Bonne L, Lalande V, Burghoffer B, Luiuz R, Petit JC. Clinical features of Clostridium difficile-associated infections and molecular characterization of strains: results of a retrospective study, 2000-2004. Infect Control Hosp Epidemiol 2007; 28:131-9; PMID:17265393; http://dx.doi.org/10.1086/511794
  • Goldenberg SD, French GL. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J Infect 2011; 62:355-62; PMID:21396957; http://dx.doi.org/10.1016/j.jinf.2011.03.001
  • Barbut F, Decré D, Lalande V, Burghoffer B, Nousssair L, Gigandon A, Espinasse F, Raskine L, Robert J, Mangeol A, et al. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specfic ADP-ribosyltransferase)-producing strains. J Med Microbiol 2005; 54:181-5; PMID:15673514; http://dx.doi.org/10.1099/jmm.0.45804-0
  • Rupnik M. Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 2007; 13:457-9; PMID:17331126; http://dx.doi.org/10.1111/j.1469-0691.2007.01687.x
  • Gould LH, Limbago B. Clostridium difficile in food and domestic animals: a new foodborne pathogen? Clin Infect Dis 2010; 51:577-82; PMID:20642351; http://dx.doi.org/10.1086/655692
  • Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014; 5:15-27; PMID:24253566; http://dx.doi.org/10.4161/gmic.26854
  • Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, Kuijper EJ, Wilcox MH. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 2010; 23:529-49; PMID:20610822; http://dx.doi.org/10.1128/CMR.00082-09
  • Lawley TD, Clare S, Deakin LJ, Goulding D, Yen JL, Raisen C, Brandt C, Lovell J, Cooke F, Clark TG, et al. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 2010; 76:6895-900; PMID:20802075; http://dx.doi.org/10.1128/AEM.00718-10
  • Maillard JY. Innate resistance to sporicides and potential failure to decontaminate. J Hosp Infect 2011; 77:204-9; PMID:20850897; http://dx.doi.org/10.1016/j.jhin.2010.06.028
  • Weber DJ, Rutala WA, Miller MB, Huslage K, Sickbert-Bennett E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 2010; 38:S25-33; PMID:20569853; http://dx.doi.org/10.1016/j.ajic.2010.04.196
  • Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, Mastroeni P, Scott P, Raisen C, Mottram L, et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 2009; 77:3661-9; PMID:19564382; http://dx.doi.org/10.1128/IAI.00558-09
  • Burns DA, Minton NP. Sporulation studies in Clostridium difficile. J Microbiol Methods 2011; 87:133-8; PMID:21864584; http://dx.doi.org/10.1016/j.mimet.2011.07.017
  • Henriques AO, Moran CP, Jr. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 2007; 61:555-88; PMID:18035610; http://dx.doi.org/10.1146/annurev.micro.61.080706.093224
  • Popham DL, Helin J, Costello CE, Setlow P. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A 1996; 93:15405-10; PMID:8986824; http://dx.doi.org/10.1073/pnas.93.26.15405
  • Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 2009; 191:5377-86; PMID:19542279; http://dx.doi.org/10.1128/JB.00597-09
  • Leski TA, Caswell CC, Pawlowski M, Klinke DJ, Bujnicki JM, Hart SJ, Lukomski S. Identification and classification of bcl genes and proteins of Bacillus cereus group organisms and their application in Bacillus anthracis detection and fingerprinting. Appl Environ Microbiol 2009; 75:7163-72; PMID: 19767469; http://dx.doi.org/10.1128/AEM.01069-09
  • Hodgkiss W, Ordal ZJ, Cann DC. The morphology and ultrastructure of the spore and exosporium of some Clostridium species. J Gen Microbiol 1967; 47:213-25; PMID:6045662; http://dx.doi.org/10.1099/00221287-47-2-213
  • Barra-Carrasco J, Olguin-Araneda V, Plaza-Garrido A, Miranda-Cardenas C, Cofre-Araneda G, Pizarro-Guajardo M, Sarker MR, Paredes-Sabja D. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013; 195:3863-75; PMID:23794627; http://dx.doi.org/10.1128/JB.00369-13
  • Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 2002; 45:169-78; PMID:12100557; http://dx.doi.org/10.1046/j.1365-2958.2000.03000.x
  • Brahmbhatt TN, Janes BK, Stibitz ES, Darnell SC, Sanz P, Rasmussen SB, O'Brien AD. Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect Immun 2007; 75:5233-9; PMID:17709408; http://dx.doi.org/10.1128/IAI.00660-07
  • Bozue J, Moody KL, Cote CK, Stiles BG, Friedlander AM, Welkos SL, Hale ML. Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect Immun 2007; 75:4498-505; PMID:17606596; http://dx.doi.org/10.1128/IAI.00434-07
  • Pizarro-Guajardo M, Olguin-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 2014; PMID:24269655
  • Escobar-Cortes K, Barra-Carrasco J, Paredes-Sabja D. Proteases and sonication specifically remove the exosporium layer of spores of Clostridium difficile strain 630. J Microbiol Methods 2013; 93:25-31; PMID:23384826; http://dx.doi.org/10.1016/j.mimet.2013.01.016
  • Paredes-Sabja D, Sarker MR. Adherence of Clostridium difficile spores to Caco-2 cells in culture. J Med Microbiol 2012; 61:1208-18; PMID:22595914; http://dx.doi.org/10.1099/jmm.0.043687-0
  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006; 38:779-86; PMID:16804543; http://dx.doi.org/10.1038/ng1830
  • Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson MC, La Ragione R, Brisson AR, Fairweather N, Hong HA, et al. Functional characterization of Clostridium difficile spore coat proteins. J Bacteriol 2013; 195:1492-503; PMID:23335421; http://dx.doi.org/10.1128/JB.02104-12
  • Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM. Surface layers of Clostridium difficile endospores. J Bacteriol 2011; 193:6461-70; PMID:21949071; http://dx.doi.org/10.1128/JB.05182-11
  • Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013; 9:e1003356; PMID:23675301; http://dx.doi.org/10.1371/journal.ppat.1003356
  • Putnam EE, Nock AM, Lawley TD, Shen A. SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 2013; 195:1214-25; PMID:23292781; http://dx.doi.org/10.1128/JB.02181-12
  • Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In pursuit of protein targets: proteomic characterization of bacterial spore outer layers. J Proteome Res 2013; 12:4507-21; PMID:23998435; http://dx.doi.org/10.1021/pr4005629
  • Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007; 70:452-64; PMID:17658189; http://dx.doi.org/10.1016/j.mimet.2007.05.021
  • Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD. The Clostridium difficile spo0A Gene Is a Persistence and Transmission Factor. Infect Immun 2012; 80:2704-11; PMID:22615253; http://dx.doi.org/10.1128/IAI.00147-12
  • Donskey CJ. Preventing transmission of Clostridium difficile: is the answer blowing in the wind? Clin Infect Dis 2010; 50:1458-61; PMID:20415566; http://dx.doi.org/10.1086/652649
  • Joshi LT, Phillips DS, Williams CF, Alyousef A, Baillie L. Contribution of spores to the ability of Clostridium difficile to adhere to surfaces. Appl Environ Microbiol 2012; 78:7671-9; PMID:22923404; http://dx.doi.org/10.1128/AEM.01862-12
  • Verity P, Wilcox MH, Fawley W, Parnell P. Prospective evaluation of environmental contamination by Clostridium difficile in isolation side rooms. J Hosp Infect 2001; 49:204-9; PMID:11716638; http://dx.doi.org/10.1053/jhin.2001.1078
  • Eveillard M, Fourel V, Barc M-C, Kerneis S, Coconnier MH, Karjalainen T, Bourlioux P, Servin A. Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture. Mol Microbiol 1993; 7:371-81; PMID:8459765; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01129.x
  • Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190:2505-12; PMID:18245298; http://dx.doi.org/10.1128/JB.01765-07
  • Francis MB, Allen CA, Sorg JA. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS One 2013; 8:e73653; http://dx.doi.org/10.1371/annotation/1e464689-3c86-4399-b229-1e00d65593a5
  • Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 2010; 192:4983-90; PMID:20675492; http://dx.doi.org/10.1128/JB.00610-10
  • Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 2010; 31:21-7; PMID:19929371; http://dx.doi.org/10.1086/649016
  • Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 2007; 45:992-8; PMID:17879913; http://dx.doi.org/10.1086/521854
  • Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS One 2013; 8:e79666; PMID:24236153; http://dx.doi.org/10.1371/journal.pone.0079666
  • Stephenson K, Hoch JA. Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 2002; 46:297-304; PMID:12406209; http://dx.doi.org/10.1046/j.1365-2958.2002.03186.x
  • Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013; 9:e1003756; PMID:24098137; http://dx.doi.org/10.1371/journal.pgen.1003756
  • Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013; 9:e1003660; PMID:23950727; http://dx.doi.org/10.1371/journal.pgen.1003660
  • Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782; PMID:24098139; http://dx.doi.org/10.1371/journal.pgen.1003782
  • Sara M, Sleytr UB. S-Layer proteins. J Bacteriol 2000; 182:859-68; PMID:10648507; http://dx.doi.org/10.1128/JB.182.4.859-868.2000
  • Dang TH, de la Riva L, Fagan RP, Storck EM, Heal WP, Janoir C, Fairweather NF, Tate EW. Chemical probes of surface layer biogenesis in Clostridium difficile. ACS Chem Biol 2010; 5:279-85; PMID:20067320; http://dx.doi.org/10.1021/cb9002859
  • Calabi E, Fairweather N. Patterns of sequence conservation in the S-Layer proteins and related sequences in Clostridium difficile. J Bacteriol 2002; 184:3886-97; PMID:12081960; http://dx.doi.org/10.1128/JB.184.14.3886-3897.2002
  • Fagan RP, Albesa-Jove D, Qazi O, Svergun DI, Brown KA, Fairweather NF. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol 2009; 71:1308-22; PMID:19183279; http://dx.doi.org/10.1111/j.1365-2958.2009.06603.x
  • Calabi E, Calabi F, Phillips AD, Fairweather NF. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 2002; 70:5770-8; PMID:12228307; http://dx.doi.org/10.1128/IAI.70.10.5770-5778.2002
  • Merrigan MM, Venugopal A, Roxas JL, Anwar F, Mallozzi MJ, Roxas BA, Gerding DN, Viswanathan VK, Vedantam G. Surface-Layer Protein A (SlpA) Is a Major Contributor to Host-Cell Adherence of Clostridium difficile. PLoS One 2013; 8:e78404; PMID:24265687; http://dx.doi.org/10.1371/journal.pone.0078404
  • Ryan A, Lynch M, Smith SM, Amu S, Nel HJ, McCoy CE, Dowling JK, Draper E, O'Reilly V, McCarthy C, et al. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog 2011; 7:e1002076; PMID:21738466; http://dx.doi.org/10.1371/journal.ppat.1002076
  • Bianco M, Fedele G, Quattrini A, Spigaglia P, Barbanti F, Mastrantonio P, Ausiello CM. Immunomodulatory activities of surface-layer proteins obtained from epidemic and hypervirulent Clostridium difficile strains. J Med Microbiol 2011; 60:1162-7; PMID:21349985; http://dx.doi.org/10.1099/jmm.0.029694-0
  • Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR, Crossman L, et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 2007; 17:1082-92; PMID:17519437; http://dx.doi.org/10.1101/gr.6282807
  • Emerson JE, Fairweather N. Surface structures of C. difficile and other clostridia. In: Bruggemann H, Gottschalk G. ed. Clostridia - Molecular Biology in the Post-genomic Era. Norfolk, UK: Caister Academic Press, 2009:157-67.;
  • Karjalainen T, Waligora-Dupriet AJ, Cerquetti M, Spigaglia P, Maggioni A, Mauri P, Mastrantonio P. Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect Immun 2001; 69:3442-6; PMID:11292772; http://dx.doi.org/10.1128/IAI.69.5.3442-3446.2001
  • Dingle KE, Didelot X, Ansari MA, Eyre DW, Vaughan A, Griffiths D, Ip CL, Batty EM, Golubchik T, Bowden R, et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis 2013; 207:675-86; PMID:23204167; http://dx.doi.org/10.1093/infdis/jis734
  • Biazzo M, Cioncada R, Fiaschi L, Tedde V, Spigaglia P, Mastrantonio P, Pizza M, Barocchi MA, Scarselli M, Galeotti CL. Diversity of cwp loci in clinical isolates of Clostridium difficile. J Med Microbiol 2013; 62:1444-52; PMID:23722432; http://dx.doi.org/10.1099/jmm.0.058719-0
  • Wright A, Wait R, Begum S, Crossett B, Nagy J, Brown K, Fairweather N. Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics 2005; 5:2443-52; PMID:15887182; http://dx.doi.org/10.1002/pmic.200401179
  • Emerson JE, Stabler RA, Wren BW, Fairweather NF. Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J Med Microbiol 2008; 57:757-64; PMID:18480334; http://dx.doi.org/10.1099/jmm.0.47657-0
  • Wright A, Drudy D, Kyne L, Brown K, Fairweather NF. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol 2008; 57:750-6; PMID:18480333; http://dx.doi.org/10.1099/jmm.0.47532-0
  • de la Riva L, Willing SE, Tate EW, Fairweather NF. Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J Bacteriol 2011; 193:3276-85; PMID:21531808; http://dx.doi.org/10.1128/JB.00248-11
  • Janoir C, Pechine S, Grosdidier C, Collignon A. Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol 2007; 189:7174-80; PMID:17693508; http://dx.doi.org/10.1128/JB.00578-07
  • ChapetonMontes D, Candela T, Collignon A, Janoir C. Localization of the Clostridium difficile cysteine protease Cwp84 and insights into its maturation process. J Bacteriol 2011; 193:5314-21; PMID:21784932; http://dx.doi.org/10.1128/JB.00326-11
  • Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 2001; 69:2144-53; PMID: 11254569; http://dx.doi.org/10.1128/IAI.69.4.2144-2153.2001
  • Emerson JE, Reynolds CB, Fagan RP, Shaw HA, Goulding D, Fairweather NF. A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol 2009; 74:541-56; PMID:19656296; http://dx.doi.org/10.1111/j.1365-2958.2009.06812.x
  • Reynolds CB, Emerson JE, de la Riva L, Fagan RP, Fairweather NF. The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function. PLoS Pathog 2011; 7:e1002024; PMID:21533071; http://dx.doi.org/10.1371/journal.ppat.1002024
  • Monteiro MA, Ma Z, Bertolo L, Jiao Y, Arroyo L, Hodgins D, Mallozzi M, Vedantam G, Sagermann M, Sundsmo J, et al. Carbohydrate-based Clostridium difficile vaccines. Expert Rev Vaccines 2013; 12:421-31; PMID:23560922; http://dx.doi.org/10.1586/erv.13.9
  • Martin CE, Broecker F, Eller S, Oberli MA, Anish C, Pereira CL, Seeberger PH. Glycan arrays containing synthetic Clostridium difficile lipoteichoic acid oligomers as tools toward a carbohydrate vaccine. Chem Commun (Camb) 2013; 49:7159-61; PMID:23836132; http://dx.doi.org/10.1039/c3cc43545h
  • Oberli MA, Hecht ML, Bindschadler P, Adibekian A, Adam T, Seeberger PH. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 2011; 18:580-8; PMID:21609839; http://dx.doi.org/10.1016/j.chembiol.2011.03.009
  • Romano MR, Leuzzi R, Cappelletti E, Tontini M, Nilo A, Proietti D, Berti F, Costantino P, Adamo R, Scarselli M. Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel) 2014; 6:1385-96; PMID:24759173; http://dx.doi.org/10.3390/toxins6041385
  • Borriello S P, Davies HA, Barclay FE. Detection of fimbriae amongst strains of Clostridium difficile. FEMS Microbiol Lett 1988; 49:65-7; http://dx.doi.org/10.1111/j.1574-6968.1988.tb02683.x
  • Taha S, Johansson O, Rivera Jonsson S, Heimer D, Krovacek K. Toxin production by and adhesive properties of Clostridium difficile isolated from humans and horses with antibiotic-associated diarrhea. Comp Immunol Microbiol Infect Dis 2007; 30:163-74; PMID:17239950; http://dx.doi.org/10.1016/j.cimid.2006.11.006
  • Melville S, Craig L. Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev 2013; 77:323-41; PMID:24006467; http://dx.doi.org/10.1128/MMBR.00063-12
  • Maldarelli GA, De Masi L, von Rosenvinge EC, Carter M, Donnenberg MS. Identification, immunogenicity, and cross-reactivity of type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis 2014; PMID:24550179
  • Pituch H, Obuch-Woszczatynski P, van den Braak N, van Belkum A, Kujawa M, Luczak M, Meisel-Mikolajczyk F. Variable flagella expression among clonal toxin A−/B+ Clostridium difficile strains with highly homogeneous flagellin genes. Clin Microbiol Infect 2002; 8:187-8; PMID:12010175; http://dx.doi.org/10.1046/j.1469-0691.2002.00394.x
  • Tasteyre A, Karjalainen T, Avesani V, Delmeé M, Collignon A, Bourlioux P, Barc M-C. Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 2000; 38:3179-86; PMID:10970353
  • Tasteyre A, Karjalainen T, Avesani V, Delmee M, Collignon A, Bourlioux P, Barc MC. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. J Clin Microbiol 2001; 39:1178-83; PMID:11230454; http://dx.doi.org/10.1128/JCM.39.3.1178-1183.2001
  • Dingle TC, Mulvey GL, Armstrong GD. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect Immun 2011; 79:4061-7; PMID:21788384; http://dx.doi.org/10.1128/IAI.05305-11
  • Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP. The Role of Flagella in Clostridium difficile Pathogenesis: Comparison between a Non-Epidemic and an Epidemic Strain. PLoS One 2013; 8:e73026; PMID:24086268; http://dx.doi.org/10.1371/journal.pone.0073026
  • Aubry A, Hussack G, Chen W, KuoLee R, Twine SM, Fulton KM, Foote S, Carrillo CD, Tanha J, Logan SM. Modulation of toxin production by the flagellar regulon in Clostridium difficile. Infect Immun 2012; 80:3521-32; PMID:22851750; http://dx.doi.org/10.1128/IAI.00224-12
  • Ethapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2013; 195:545-55; PMID:23175653; http://dx.doi.org/10.1128/JB.01980-12
  • Cerquetti M, Serafino A, Sebastianelli A, Mastrantonio P. Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. Fed Euro Microbiol Soc Immunol Med Microbiol 2002; 32:211-8; http://dx.doi.org/10.1111/j.1574-695X.2002.tb00556.x
  • Hennequin C, Janoir C, Barc MC, Collignon A, Karjalainen T. Identification and characterization of a fibronectin-binding protein from Clostridium difficile. Microbiology 2003; 149:2779-87; PMID:14523111; http://dx.doi.org/10.1099/mic.0.26145-0
  • Lin YP, Kuo CJ, Koleci X, McDonough SP, Chang YF. Manganese binds to Clostridium difficile Fbp68 and is essential for fibronectin binding. J Biol Chem 2011; 286:3957-69; PMID:21062746; http://dx.doi.org/10.1074/jbc.M110.184523
  • Barketi-Klai A, Hoys S, Lambert-Bordes S, Collignon A, Kansau I. Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization. J Med Microbiol 2011; 60:1155-61; PMID:21349990; http://dx.doi.org/10.1099/jmm.0.029553-0
  • Cafardi V, Biagini M, Martinelli M, Leuzzi R, Rubino JT, Cantini F, Norais N, Scarselli M, Serruto D, Unnikrishnan M. Identification of a Novel Zinc Metalloprotease through a Global Analysis of Clostridium difficile Extracellular Proteins. PLoS One 2013; 8:e81306; PMID:24303041; http://dx.doi.org/10.1371/journal.pone.0081306
  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998; 280:734-7; PMID:9563949; http://dx.doi.org/10.1126/science.280.5364.734
  • Tulli L, Marchi S, Petracca R, Shaw HA, Fairweather NF, Scarselli M, Soriani M, Leuzzi R. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol 2013; 15:1674-87; PMID:23517059
  • Hennequin C, Collignon A, Karjalainen T. Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microbial Pathogenesis 2001; 31:255-60; PMID:11710845; http://dx.doi.org/10.1006/mpat.2001.0468
  • Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 2001; 147:87-96; PMID:11160803
  • Pechine S, Hennequin C, Boursier C, Hoys S, Collignon A. Immunization Using GroEL Decreases Clostridium difficile Intestinal Colonization. PLoS One 2013; 8:e81112; PMID:24303034; http://dx.doi.org/10.1371/journal.pone.0081112
  • Prevention CDC. Antibiotic resistance threats in the United States, 2013. Threat Report 2013:50-2.;
  • Gandra S, Ellison RT, 3rd. Modern Trends in Infection Control Practices in Intensive Care Units. J Intensive Care Med 2013; PMID:23753240
  • Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridium difficile infection. J Infect Dis 2013; 207:1498-504; PMID:23420906; http://dx.doi.org/10.1093/infdis/jit068
  • Hutton ML, Mackin KE, Chakravorty A, Lyras D. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett 2013; 352:140-9; PMID:24372713; http://dx.doi.org/10.1111/1574-6968.12367

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.