1,247
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions

, , , , &
Pages 613-625 | Received 25 Jun 2014, Accepted 22 Oct 2014, Published online: 06 Jan 2015

References

  • Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009; 136:688-700; PMID:19239889; http://dx.doi.org/10.1016/j.cell.2009.02.001
  • Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 2008; 9:843-54; PMID:18927579; http://dx.doi.org/10.1038/nrg2438; 10.1038/nrg2438
  • Proudfoot NJ. Ending the message: Poly(A) signals then and now. Genes Dev 2011; 25:1770-82; PMID:21896654; http://dx.doi.org/10.1101/gad.17268411
  • Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3'-end processing. Cell Mol Life Sci 2008; 65:1099-122; PMID:18158581; http://dx.doi.org/10.1007/s00018-007-7474-3
  • Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature 2006; 444:953-6; PMID:17128255; http://dx.doi.org/10.1038/nature05363
  • Martin F, Schaller A, Eglite S, Schumperli D, Muller B. The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. EMBO J 1997; 16:769-78; PMID:9049306; http://dx.doi.org/10.1093/emboj/16.4.769
  • Mowry KL, Steitz JA. Identification of the human U7 snRNP as one of several factors involved in the 3′ end maturation of histone premessenger RNA's. Science 1987; 238:1682-7; PMID:2825355
  • Schaufele F, Gilmartin GM, Bannwarth W, Birnstiel ML. Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature 1986; 323:777-81; PMID:3022153; http://dx.doi.org/10.1038/323777a0
  • Wang ZF, Whitfield ML, Ingledue TC,3rd, Dominski Z, Marzluff WF. The protein that binds the 3′ end of histone mRNA: A novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev 1996; 10:3028-40; PMID:8957003
  • Pillai RS, Will CL, Luhrmann R, Schumperli D, Muller B. Purified U7 snRNPs lack the sm proteins D1 and D2 but contain Lsm10, a new 14 kDa sm D1-like protein. EMBO J 2001; 20:5470-9; PMID:11574479; http://dx.doi.org/10.1093/emboj/20.19.5470
  • Pillai RS, Grimmler M, Meister G, Will CL, Luhrmann R, Fischer U, Schumperli D. Unique sm core structure of U7 snRNPs: Assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes Dev 2003; 17:2321-33; PMID:12975319; http://dx.doi.org/10.1101/gad.274403
  • Burch BD, Godfrey AC, Gasdaska PY, Salzler HR, Duronio RJ, Marzluff WF, Dominski Z. Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in drosophila. RNA 2011; 17:1132-47; PMID:21525146; http://dx.doi.org/10.1261/rna.2566811
  • Yang XC, Burch BD, Yan Y, Marzluff WF, Dominski Z. FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol Cell 2009; 36:267-78; PMID:19854135; http://dx.doi.org/10.1016/j.molcel.2009.08.016
  • Dominski Z, Yang XC, Marzluff WF. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 2005; 123:37-48; PMID:16213211; http://dx.doi.org/10.1016/j.cell.2005.08.002
  • Sabath I, Skrajna A, Yang XC, Dadlez M, Marzluff WF, Dominski Z. 3'-end processing of histone pre-mRNAs in drosophila: U7 snRNP is associated with FLASH and polyadenylation factors. RNA 2013; PMID:24145821; http://dx.doi.org/10.1261/rna.040360.113
  • Yang XC, Sabath I, Debski J, Kaus-Drobek M, Dadlez M, Marzluff WF, Dominski Z. A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3'-end processing. Mol Cell Biol 2013; 33:28-37; PMID:23071092; http://dx.doi.org/10.1128/MCB.00653-12
  • Gick O, Kramer A, Vasserot A, Birnstiel ML. Heat-labile regulatory factor is required for 3' processing of histone precursor mRNAs. Proc Natl Acad Sci U S A 1987; 84:8937-40; PMID:2962194
  • Kolev NG, Steitz JA. Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev 2005; 19:2583-92; PMID:16230528; http://dx.doi.org/10.1101/gad.1371105
  • Wagner EJ, Burch BD, Godfrey AC, Salzler HR, Duronio RJ, Marzluff WF. A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing. Mol Cell 2007; 28:692-9; PMID:18042462; http://dx.doi.org/10.1016/j.molcel.2007.10.009
  • Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. Crystal structure of the HEAT domain from the pre-mRNA processing factor symplekin. J Mol Biol 2009; 392:115-28; PMID:19576221; http://dx.doi.org/10.1016/j.jmb.2009.06.062
  • Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010; 467:729-33; PMID:20861839; http://dx.doi.org/10.1038/nature09391; 10.1038/nature09391
  • Laishram RS, Anderson RA. The poly A polymerase star-PAP controls 3′-end cleavage by promoting CPSF interaction and specificity toward the pre-mRNA. EMBO J 2010; 29:4132-45; PMID:21102410; http://dx.doi.org/10.1038/emboj.2010.287
  • Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, Anderson RA. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 2008; 451:1013-7; PMID:18288197; http://dx.doi.org/10.1038/nature06666
  • Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 2004; 119:641-51; PMID:15550246; http://dx.doi.org/10.1016/j.cell.2004.10.029
  • Keon BH, Schafer S, Kuhn C, Grund C, Franke WW. Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996; 134:1003-18; PMID:8769423
  • Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000; 20:1515-25; PMID:10669729
  • Ruepp MD, Schweingruber C, Kleinschmidt N, Schumperli D. Interactions of CstF-64, CstF-77, and symplekin: Implications on localisation and function. Mol Biol Cell 2011; 22:91-104; PMID:21119002; http://dx.doi.org/10.1091/mbc.E10-06-0543
  • Kavanagh E, Buchert M, Tsapara A, Choquet A, Balda MS, Hollande F, Matter K. Functional interaction between the ZO-1-interacting transcription factor ZONAB/DbpA and the RNA processing factor symplekin. J Cell Sci 2006; 119:5098-105; PMID:17158914; http://dx.doi.org/10.1242/jcs.03297
  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG. The drosophila melanogaster cajal body. J Cell Biol 2006; 172:875-84; PMID:16533947; http://dx.doi.org/10.1083/jcb.200511038
  • Bulchand S, Menon SD, George SE, Chia W. Muscle wasted: A novel component of the drosophila histone locus body required for muscle integrity. J Cell Sci 2010; 123:2697-707; PMID:20647374; http://dx.doi.org/10.1242/jcs.063172
  • Ye X, Wei Y, Nalepa G, Harper JW. The cyclin E/Cdk2 substrate p220(NPAT) is required for S-phase entry, histone gene expression, and cajal body maintenance in human somatic cells. Mol Cell Biol 2003; 23:8586-600; PMID:14612403
  • White AE, Burch BD, Yang XC, Gasdaska PY, Dominski Z, Marzluff WF, Duronio RJ. Drosophila histone locus bodies form by hierarchical recruitment of components. J Cell Biol 2011; 193:677-94; PMID:21576393; http://dx.doi.org/10.1083/jcb.201012077
  • St Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase Consortium. FlyBase 102–advanced approaches to interrogating FlyBase. Nucleic Acids Res 2014; 42:D780-8; PMID:24234449; http://dx.doi.org/10.1093/nar/gkt1092 [doi]
  • Nechaev S, Fargo DC, dos Santos G, Liu L, Gao Y, Adelman K. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of pol II in drosophila. Science 2010; 327:335-8; PMID:20007866; http://dx.doi.org/10.1126/science.1181421
  • Sullivan E, Santiago C, Parker ED, Dominski Z, Yang X, Lanzotti DJ, Ingledue TC, Marzluff WF, Duronio RJ. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev 2001; 15:173-87; PMID:11157774
  • Godfrey AC, Kupsco JM, Burch BD, Zimmerman RM, Dominski Z, Marzluff WF, Duronio RJ. U7 snRNA mutations in drosophila block histone pre-mRNA processing and disrupt oogenesis. RNA 2006; 12:396-409; PMID:16495235; http://dx.doi.org/12/3/396 [pii]
  • Rajendra TK, Praveen K, Matera AG. Genetic analysis of nuclear bodies: From nondeterministic chaos to deterministic order. Cold Spring Harb Symp Quant Biol 2010; 75:365-74; PMID:21467138; http://dx.doi.org/10.1101/sqb.2010.75.043
  • Sullivan KD, Steiniger M, Marzluff WF. A core complex of CPSF73, CPSF100, and symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 2009; 34:322-32; PMID:19450530; http://dx.doi.org/10.1016/j.molcel.2009.04.024
  • Benoit B, Juge F, Iral F, Audibert A, Simonelig M. Chimeric human CstF-77/drosophila suppressor of forked proteins rescue suppressor of forked mutant lethality and mRNA 3' end processing in drosophila. Proc Natl Acad Sci U S A 2002; 99:10593-8; PMID:12149458; http://dx.doi.org/10.1073/pnas.162191899
  • Godfrey AC, White AE, Tatomer DC, Marzluff WF, Duronio RJ. The drosophila U7 snRNP proteins Lsm10 and Lsm11 are required for histone pre-mRNA processing and play an essential role in development. RNA 2009; 15:1661-72; PMID:19620235; http://dx.doi.org/10.1261/rna.1518009
  • White AE, Leslie ME, Calvi BR, Marzluff WF, Duronio RJ. Developmental and cell cycle regulation of the drosophila histone locus body. Mol Biol Cell 2007; 18:2491-502; PMID:17442888; http://dx.doi.org/10.1091/mbc.E06-11-1033
  • Su TT, Campbell SD, O'Farrell PH. The cell cycle program in germ cells of the drosophila embryo. Dev Biol 1998; 196:160-70; PMID:9576829; http://dx.doi.org/10.1006/dbio.1998.8855
  • Lanzotti DJ, Kupsco JM, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Drosophila stem-loop binding protein intracellular localization is mediated by phosphorylation and is required for cell cycle-regulated histone mRNA expression. Mol Biol Cell 2004; 15:1112-23; PMID:14999087; http://dx.doi.org/10.1091/mbc.E03-09-0649
  • Cayirlioglu P, Ward WO, Silver Key SC, Duronio RJ. Transcriptional repressor functions of drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol Cell Biol 2003; 23:2123-34; PMID:12612083
  • Mulligan PK, Rasch EM. Determination of DNA content in the nurse and follicle cells from wild type and mutant drosophila melanogaster by DNA-feulgen cytophotometry. Histochemistry 1985; 82:233-47; PMID:2581922
  • Calvi BR, Lilly MA, Spradling AC. Cell cycle control of chorion gene amplification. Genes Dev 1998; 12:734-44; PMID:9499407
  • Spradling AC, Mahowald AP. Amplification of genes for chorion proteins during oogenesis in drosophila melanogaster. Proc Natl Acad Sci U S A 1980; 77:1096-100; PMID:6767241
  • Schulte J, Tepass U, Auld VJ. Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in drosophila. J Cell Biol 2003; 161:991-1000; PMID:12782681; http://dx.doi.org/10.1083/jcb.200303192
  • Fristrom DK. Septate junctions in imaginal disks of drosophila: A model for the redistribution of septa during cell rearrangement. J Cell Biol 1982; 94:77-87; PMID:7119018
  • Auld VJ, Fetter RD, Broadie K, Goodman CS. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in drosophila. Cell 1995; 81:757-67; PMID:7539719; http://dx.doi.org/10.1016/0092-8674(95)90537-5
  • Hofmann I, Schnolzer M, Kaufmann I, Franke WW. Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in xenopus laevis oocytes. Mol Biol Cell 2002; 13:1665-76; PMID:12006661; http://dx.doi.org/10.1091/mbc.01-12-0567
  • Mansfield JH, Wilhelm JE, Hazelrigg T. Ypsilon schachtel, a drosophila Y-box protein, acts antagonistically to orb in the oskar mRNA localization and translation pathway. Development 2002; 129:197-209; PMID:11782413
  • Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD. Isolation of a ribonucleoprotein complex involved in mRNA localization in drosophila oocytes. J Cell Biol 2000; 148:427-40; PMID:10662770
  • Schotman H, Karhinen L, Rabouille C. dGRASP-mediated noncanonical integrin secretion is required for drosophila epithelial remodeling. Dev Cell 2008; 14:171-82; PMID:18267086; http://dx.doi.org/10.1016/j.devcel.2007.12.006
  • Bilder D, Haigo SL. Expanding the morphogenetic repertoire: Perspectives from the drosophila egg. Dev Cell 2012; 22:12-23; PMID:22264728; http://dx.doi.org/10.1016/j.devcel.2011.12.003
  • Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun 2012; 3:675; PMID:22334078; http://dx.doi.org/10.1038/ncomms1678
  • Lanzotti DJ, Kaygun H, Yang X, Duronio RJ, Marzluff WF. Developmental control of histone mRNA and dSLBP synthesis during drosophila embryogenesis and the role of dSLBP in histone mRNA 3' end processing in vivo. Mol Cell Biol 2002; 22:2267-82; PMID:11884612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.