1,423
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

A mRNA and Cognate MicroRNAs Localize in the Nucleolus

, &
Pages 636-642 | Received 08 Oct 2014, Accepted 24 Oct 2014, Published online: 06 Jan 2015

References

  • Politz JC, Browne ES, Wolf DE, Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci USA 1998; 95:6043-6048; PMID:9600914; http://dx.doi.org/10.1073/pnas.95.11.6043.
  • Politz JC, Tuft RA, Pederson T, Singer RH. Movement of poly(A) RNA throughout the interchromatin space in living cells. Curr Biol 1999; 9:285-291; PMID:10209094; http://dx.doi.org/10.1016/S0960-9822(99)80136-5
  • Daneholt B. Pre-mRNP particles:from gene to nuclear pore. Curr Biol 1999; 9:R412-R415; PMID:10359690; http://dx.doi.org/10.1016/S0960-9822(99)80256-5
  • Politz JC, Pederson T. Movement of mRNA from transcription sites to nuclear pores. J Struc Biol 2000; 129:252-257; http://dx.doi.org/10.1006/jsbi.2000.4227
  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH. Dynamics of single mRNPs in nuclei of living cells. Science 2004; 304:1797-1800; PMID:15205532; http://dx.doi.org/10.1126/science.1099754
  • Mor A, Ben-Yishay R, Shav-Tal Y. On the right track:following the nucleo-cytoplasmic path of an mRNA. Nucleus 2010; 1:492-498; PMID:21327092; http://dx.doi.org/10.4161/nucl.1.6.13515
  • Tani T, Derby RJ, Hiraoka Y, Spector DL. Nucleolar accumulation of poly(A)+ RNA in heat-shocked yeast cells:implication of nucleolar involvement in mRNA transport. Mol Biol Cell 1995; 6:1515-1534; PMID:8589453; http://dx.doi.org/10.1091/mbc.6.11.1515
  • Názer E, Verdύn RE, Sánchez DO. Severe heat shock induces nucleolar accumulation of mRNAs in Trypanosoma cruzi. PLoS One 2012; 7:e43715; http://dx.doi.org/10.1371/journal.pone.0043715
  • John HA, Patrinou-Georgoulas M, Jones KW. Detection of myosin heavy chain mRNA during myogenesis in tissue culture by in vitro and in situ hybridization. Cell 1977; 12:501-508; PMID:912755; http://dx.doi.org/10.1016/0092-8674(77)90126-X
  • Bond VC, Wold, BJ. Nucleolar localization of myc transcripts. Mol Cell Biol 1993; 13:3221-3230; PMID:7684491
  • Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JW. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. The Plant Cell 2009; 21:2045-2057; PMID:19602621; http://dx.doi.org/10.1105/tpc.109.067736
  • Sidebottom E, Harris H. The role of the nucleolus in the transfer of RNA from nucleus to cytoplasm. J Cell Sci 1969; 5:351-364.
  • Politz JCR, Zhang F, Pederson T. MicroRNA-206 co-localizes with ribosome-rich regions in the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA 2006; 103:18957-18962; http://dx.doi.org/10.1073/pnas.0609466103
  • Politz JCR, Hogan E, Pederson T. MicroRNAs with a nucleolar location. RNA 2009; 15:1705-1715; PMID:19628621; http://dx.doi.org/10.1261/rna.1470409
  • Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM, Lam YW. Dynamic localization of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One 2013; 8:e70869.
  • Bai B, Liu H, Laiho M. Small RNA expression and deep sequencing analysis of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 2014; 4:441-449; PMID:24918059; http://dx.doi.org/10.1016/j.fob.2014.04.010
  • Mellon I, Bhorjee JS. Isolation and characterization of nuclei and purification of chromatin from differentiating cultures of rat skeletal muscle. Exp Cell Res 1982; 137:141-154; PMID:7035194; http://dx.doi.org/10.1016/0014-4827(82)90016-7
  • Kass S, Tyc K, Steitz JA, Sollner-Webb B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 1990; 60:697-908; PMID:2107022; http://dx.doi.org/10.1016/0092-8674(90)90338-F
  • Ellis JC, Brown DD, Brown JW. The small nucleolar ribonucleoprotein (snoRNP) database. RNA 2010:16:664-666; http://dx.doi.org/10.1261/rna.1871310
  • Florini JR, Ewton, DZ, Magri, KA. Hormones, growth factors and myogenic differentiation. Ann Rev Physiol 1991; 53:201-216; http://dx.doi.org/10.1146/annurev.ph.53.030191.001221
  • Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 1996; 17:481-517; PMID:8897022
  • Scott MS, Avollo F, Ono M, Lamond AI, Barton GJ. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comp Biol 2009; 5:e1000507; PMID:19763159; http://dx.doi.org/10.1371/journal.pcbi.1000507
  • Lin C-C, Liu L-Z, Addison, JB, Wonderlin WF, Ivanov AV, Ruppert, JM. A KLF4-miRNA autoregulatory feedback loop can promote or inhibit protein translation depending on cell context. Mol Cell Biol 2011; 31:2513-2527; PMID:21518959; http://dx.doi.org/10.1128/MCB.01189-10
  • Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol 2009; 21:461-469; PMID:19278845; http://dx.doi.org/10.1016/j.ceb.2009.01.029
  • Polesskaya A, Cuvellier, S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan. Lon-28 binds IGF2 mRNA and participates in skeletal myogenesis by increasing translational efficiency. Genes Dev 2007; 1125-1138; PMID:17473174; http://dx.doi.org/10.1101/gad.415007
  • Vinod M, Chennamsetty I, Colin S, Belloy L, De Paoli F, Schaider H, Graier WF, Frank S, Kratky D, Staels B, et al. MiR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta 2014; 1841:827-835; PMID:24603323; http://dx.doi.org/10.1016/j.bbalip.2014.02.006
  • Farh KK, Grimson AA, Jan c, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 2005; 310:1817-1821; PMID:16308420; http://dx.doi.org/10.1126/science.1121158
  • Bagchi T, Larson DE, Sells BH. Cytoskeletal association of muscle-specific mRNAs in differentiating L6 rat myoblasts. Exp Cell Res 1987; 168:160-172; PMID:3780870; http://dx.doi.org/10.1016/0014-4827(87)90425-3
  • Schraivogel D, Meister G. Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem Sci 2014; 39:420-431; PMID:25131816; http://dx.doi.org/10.1016/j.tibs.2014.07.004
  • Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998; 26:3871-3876; PMID:9705492; http://dx.doi.org/10.1093/nar/26.17.3871
  • Pederson T, Politz JC. The nucleolus and the four ribonucleoproteins of translation. J Cell Biol 2000; 148:1091-1095; PMID:10725320; http://dx.doi.org/10.1083/jcb.148.6.1091
  • Tsai RY, Pederson T. Connecting the nucleolus to the cell cycle and human disease. FASEB J 2014; 28:3290-3296; PMID:24790035; http://dx.doi.org/10.1096/fj.14-254680
  • Tange TØ, Nott A. Moore MJ. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 2004; 16:279-284; PMID:15145352; http://dx.doi.org/10.1016/j.ceb.2004.03.012
  • Politz JCR, Tuft RA, Pederson T. Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 2003; 14:4805-4812; PMID:12960421; http://dx.doi.org/10.1091/mbc.E03-06-0395
  • Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zweib C, Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci USA 2000:97, 55-80; PMID:10618370; http://dx.doi.org/10.1073/pnas.97.1.55
  • Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Meth 2013; 10:253-25.
  • Reddy R, Busch H. 1998. In:“Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles,” M.L. Birnstiel, ed. Springer, Berlin, pp. 1-39.