984
Views
11
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

Candida albicansVPS4 contributes differentially to epithelial and mucosal pathogenesis

, , , , &
Pages 810-818 | Received 14 Apr 2014, Accepted 17 Aug 2014, Published online: 31 Oct 2014

References

  • Hoegl L, Ollert M, Korting HC. The role of Candida albicans secreted aspartic proteinase in the development of candidoses. J Mol Med Berl Ger 1996; 74:135-42; http://dx.doi.org/10.1007/BF01575445
  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 1997; 65:3529-38; PMID:9284116
  • Sanglard D, Hube B, Monod M, Odds FC, Gow NA. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 1997; 65:3539-46; PMID:9284117
  • Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000; 13:122-43; PMID:10627494; http://dx.doi.org/10.1128/CMR.13.1.122-143.2000
  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 2000; 174:362-74; PMID:11131027; http://dx.doi.org/10.1007/s002030000218
  • Hube B, Monod M, Schofield DA, Brown AJ, Gow NA. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 1994; 14:87-99; PMID:7830564; http://dx.doi.org/10.1111/j.1365-2958.1994.tb01269.x
  • Lee SA, Mao Y, Zhang Z, Wong B. Overexpression of a dominant-negative allele of YPT1 inhibits growth and aspartyl protease secretion in Candida albicans. Microbiol Read Engl 2001; 147:1961-70
  • Mao Y, Kalb VF, Wong B. Overexpression of a dominant-negative allele of SEC4 inhibits growth and protein secretion in Candida albicans. J Bacteriol 1999; 181:7235-42; PMID:10572126
  • Lee SA, Jones J, Khalique Z, Kot J, Alba M, Bernardo S, Seghal A, Wong B. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. FEMS Yeast Res 2007; 7:973-85; PMID:17506830; http://dx.doi.org/10.1111/j.1567-1364.2007.00253.x
  • Bernardo SM, Khalique Z, Kot J, Jones JK, Lee SA. Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet Biol 2008; 45:861-77; PMID:18296085; http://dx.doi.org/10.1016/j.fgb.2008.01.001
  • Palanisamy SKA, Ramirez MA, Lorenz M, Lee SA. Candida albicans PEP12 is required for biofilm integrity and in vivo virulence. Eukaryot Cell 2010; 9:266-77; PMID:20023068; http://dx.doi.org/10.1128/EC.00295-09
  • Thomas DP, Lopez-Ribot JL, Lee SA. A proteomic analysis of secretory proteins of a pre-vacuolar mutant of Candida albicans. J Proteomics 2009; 73:342-51; PMID:19819358; http://dx.doi.org/10.1016/j.jprot.2009.10.003
  • Lee SA, Jones J, Hardison S, Kot J, Khalique Z, Bernardo SM, Lazzell A, Monteagudo C, Lopez-Ribot J. Candida albicans VPS4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia 2009; 167:55-63; PMID:18814053; http://dx.doi.org/10.1007/s11046-008-9155-7
  • Gurunathan S, David D, Gerst JE. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J 2002; 21:602-14; PMID:11847108; http://dx.doi.org/10.1093/emboj/21.4.602
  • Harsay E, Schekman R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J Cell Biol 2002; 156:271-85; PMID:11807092; http://dx.doi.org/10.1083/jcb.200109077
  • Harsay E, Bretscher A. Parallel secretory pathways to the cell surface in yeast. J Cell Biol 1995; 131:297-310; PMID:7593160; http://dx.doi.org/10.1083/jcb.131.2.297
  • Mylonakis E, Ausubel FM, Tang RJ, Calderwood SB. The art of serendipity: killing of Caenorhabditis elegans by human pathogens as a model of bacterial and fungal pathogenesis. Expert Rev Anti Infect Ther 2003; 1:167-73; PMID:15482109; http://dx.doi.org/10.1586/14787210.1.1.167
  • Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 2007; 3:e18; PMID:17274686; http://dx.doi.org/10.1371/journal.ppat.0030018
  • Okoli I, Coleman JJ, Tampakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PloS One 2009; 4:e7025; PMID:19750012; http://dx.doi.org/10.1371/journal.pone.0007025
  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 2009; 8:1750-8; PMID:19666778; http://dx.doi.org/10.1128/EC.00163-09
  • Pukkila-Worley R, Ausubel FM, Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 2011; 7:e1002074; PMID:21731485; http://dx.doi.org/10.1371/journal.ppat.1002074
  • Sifri CD, Begun J, Ausubel FM. The worm has turned–microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 2005; 13:119-27; PMID:15737730; http://dx.doi.org/10.1016/j.tim.2005.01.003
  • Fidel PL Jr, Lynch ME, Sobel JD. Candida-specific cell-mediated immunity is demonstrable in mice with experimental vaginal candidiasis. Infect Immun 1993; 61:1990-5; PMID:8097493
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013; 4:119-28; PMID:23302789; http://dx.doi.org/10.4161/viru.22913
  • Maccallum DM. Hosting infection: experimental models to assay Candida virulence. Int J Microbiol 2012; 2012:363764; PMID:22235206; http://dx.doi.org/10.1155/2012/363764
  • Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 2008; 154:3281-95; PMID:18957582; http://dx.doi.org/10.1099/mic.0.2008/022525-0
  • Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiol Read Engl 2008; 154:3266-80; http://dx.doi.org/10.1099/mic.0.2008/022293-0
  • Correia A, Lermann U, Teixeira L, Cerca F, Botelho S, da Costa RMG, Sampaio P, Gärtner F, Morschhäuser J, Vilanova M, et al. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 2010; 78:4839-49; PMID:20679440; http://dx.doi.org/10.1128/IAI.00248-10
  • Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 2013; 27:2132-44; PMID:23430844; http://dx.doi.org/10.1096/fj.12-214353
  • Uhl MA, Biery M, Craig N, Johnson AD. Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 2003; 22:2668-78; PMID:12773383; http://dx.doi.org/10.1093/emboj/cdg256
  • Moyes DL, Shen C, Murciano C, Runglall M, Richardson JP, Arno M, Aldecoa-Otalora E, Naglik JR. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J Infect Dis 2014; 209:1816-26; PMID:24357630; http://dx.doi.org/10.1093/infdis/jit824
  • Wächtler B, Citiulo F, Jablonowski N, Förster S, Dalle F, Schaller M, Wilson D, Hube B. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PloS One 2012; 7:e36952; PMID:22606314; http://dx.doi.org/10.1371/journal.pone.0036952
  • Wagener J, Weindl G, de Groot PWJ, de Boer AD, Kaesler S, Thavaraj S, Bader O, Mailänder-Sanchez D, Borelli C, Weig M, et al. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PloS One 2012; 7:e50518; PMID:23226301; http://dx.doi.org/10.1371/journal.pone.0050518
  • Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL Jr. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PloS One 2012; 7:e46311; PMID:23050010; http://dx.doi.org/10.1371/journal.pone.0046311
  • Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, Brock M, Hube B, Wilson D. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 2012; 8:e1002777; PMID:22761575; http://dx.doi.org/10.1371/journal.ppat.1002777
  • Peters BM, Palmer GE, Nash AK, Lilly EA, Fidel PL, Noverr MC. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect Immun 2014; 82:532-43; PMID:24478069; http://dx.doi.org/10.1128/IAI.01417-13
  • Palmer GE, Kelly MN, Sturtevant JE. The Candida albicans vacuole is required for differentiation and efficient macrophage killing. Eukaryot Cell 2005; 4:1677-86; PMID:16215175; http://dx.doi.org/10.1128/EC.4.10.1677-1686.2005
  • McMullen PD, Aprison EZ, Winter PB, Amaral LAN, Morimoto RI, Ruvinsky I. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress. PLoS Comput Biol 2012; 8:e1002338; PMID: 22291584; http://dx.doi.org/10.1371/journal.pcbi.1002338
  • Stiernagle T. Maintenance of C. elegans. In WormBook (ed.), The C. elegans Research Community. 2006. http://dx.doi.org/10.1895/wormbook.1.101.1
  • Schaller M, Zakikhany K, Naglik JR, Weindl G, Hube B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc 2006; 1:2767-73; PMID:17406503; http://dx.doi.org/10.1038/nprot.2006.474
  • Negri M, Silva S, Breda D, Henriques M, Azeredo J, Oliveira R. Candida tropicalis biofilms: effect on urinary epithelial cells. Microb Pathog 2012; 53:95-9; PMID:22627049; http://dx.doi.org/10.1016/j.micpath.2012.05.006
  • Negri M, Botelho C, Silva S, Lopes LMRH, Henriques M, Azeredo J, Oliveira R. An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers. J Med Microbiol 2011; 60:1270-5; PMID:21566089; http://dx.doi.org/10.1099/jmm.0.031195-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.