3,826
Views
27
CrossRef citations to date
0
Altmetric
REVIEWS

Regulation of bacterial virulence gene expression by cell envelope stress responses

&
Pages 835-851 | Received 25 Jun 2014, Accepted 09 Sep 2014, Published online: 20 Jan 2015

References

  • Raivio TL. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 2005; 56:1119-28; PMID:15882407; http://dx.doi.org/10.1111/j.1365-2958.2005.04625.x
  • Rowley G, Spector M, Kormanec J, Roberts M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 2006; 4:383-94; PMID: 16715050; http://dx.doi.org/10.1038/nrmicro1394
  • Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2:a000414; PMID:20452953; http://dx.doi.org/10.1101/cshperspect.a000414
  • Raivio TL, Silhavy TJ. The sigmaE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 1999; 2:159-65; PMID:10322173; http://dx.doi.org/10.1016/S1369-5274(99)80028-9
  • Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 1993; 7:2618-28; PMID:8276244; http://dx.doi.org/10.1101/gad.7.12b.2618
  • Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 2013; 340:837-41; PMID:23687042; http://dx.doi.org/10.1126/science.1235358
  • De Las Penas A, Connolly L, Gross CA. SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 1997; 179:6862-4; PMID:9352942
  • MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol 2008; 631:80-110; PMID:18792683; http://dx.doi.org/10.1007/978-0-387-78885-2_6
  • Dartigalongue C, Missiakas D, Raina S. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 2001; 276:20866-75; PMID:11274153; http://dx.doi.org/10.1074/jbc.M100464200
  • Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 2006; 4:e2; PMID:16336047
  • Raivio TL. Everything old is new again: An update on current research on the Cpx envelope stress response. Biochim Biophys Acta 2014; 1844:1529-41; PMID:NOT_FOUND; http://dx.doi.org/10.1016/j.bbamcr.2013.10.018
  • Vogt SL, Raivio TL. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012; 326:2-11; PMID:22092948; http://dx.doi.org/10.1111/j.1574-6968.2011.02406.x
  • Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ. Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. J Bacteriol 1998; 180:5875-84; PMID:9811644
  • Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 1998; 180:831-9; PMID:9473036
  • Jones CH, Danese PN, Pinkner JS, Silhavy TJ, Hultgren SJ. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J 1997; 16:6394-406; PMID:9351822; http://dx.doi.org/10.1093/emboj/16.21.6394
  • Mileykovskaya E, Dowhan W. The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. J Bacteriol 1997; 179:1029-34; PMID:9023180
  • Nakayama S, Watanabe H. Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol 1995; 177:5062-9; PMID:7665485
  • Raivio TL, Leblanc SK, Price NL. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 2013; 195:2755-67; PMID:23564175; http://dx.doi.org/10.1128/JB.00105-13
  • Price NL, Raivio TL. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 2009; 191:1798-815; PMID:19103922; http://dx.doi.org/10.1128/JB.00798-08
  • Clarke DJ. The Rcs Phosphorelay: Biofilm Formation and Virulence in the Enterobacteriaceae. In: Gross R, Beier D, eds. Two-Component Systems in Bacteria. Norfolk, UK: Caister Academic Press, 2012:333-54.
  • Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005; 59:379-405; PMID:16153174; http://dx.doi.org/10.1146/annurev.micro.59.050405.101230
  • Baranova N, Nikaido H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002; 184:4168-76; PMID:12107134; http://dx.doi.org/10.1128/JB.184.15.4168-4176.2002
  • Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005; 55:1113-26; PMID:15686558; http://dx.doi.org/10.1111/j.1365-2958.2004.04449.x
  • Darwin AJ. The phage-shock-protein response. Mol Microbiol 2005; 57:621-8; PMID:16045608; http://dx.doi.org/10.1111/j.1365-2958.2005.04694.x
  • Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827; PMID:20636484
  • Yamaguchi S, Darwin AJ. Recent findings about the Yersinia enterocolitica phage shock protein response. J Microbiol 2012; 50:1-7; PMID:22367931; http://dx.doi.org/10.1007/s12275-012-1578-7
  • Model P, Jovanovic G, Dworkin J. The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 1997; 24:255-61; PMID:9159513; http://dx.doi.org/10.1046/j.1365-2958.1997.3481712.x
  • Darwin AJ. Stress relief during host infection: The phage shock protein response supports bacterial virulence in various ways. PLoS Pathog 2013; 9:e1003388; PMID:23853578; http://dx.doi.org/10.1371/journal.ppat.1003388
  • Guilvout I, Chami M, Engel A, Pugsley AP, Bayan N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 2006; 25:5241-9; PMID:17082772; http://dx.doi.org/10.1038/sj.emboj.7601402
  • Horstman NK, Darwin AJ. Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica. Mol Microbiol 2012; 85:445-60; PMID:22646656; http://dx.doi.org/10.1111/j.1365-2958.2012.08120.x
  • Seo J, Savitzky DC, Ford E, Darwin AJ. Global analysis of tolerance to secretin-induced stress in Yersinia enterocolitica suggests that the phage-shock-protein system may be a remarkably self-contained stress response. Mol Microbiol 2007; 65:714-27; PMID:17608794; http://dx.doi.org/10.1111/j.1365-2958.2007.05821.x
  • Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M. Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem 2004; 279:55707-14; PMID:15485810; http://dx.doi.org/10.1074/jbc.M408994200
  • Darwin AJ, Miller VL. The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 2001; 39:429-44; PMID:11136463; http://dx.doi.org/10.1046/j.1365-2958.2001.02235.x
  • Karlinsey JE, Maguire ME, Becker LA, Crouch ML, Fang FC. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol Microbiol 2010; 78:669-85; PMID:20807201; http://dx.doi.org/10.1111/j.1365-2958.2010.07357.x
  • Bashyam MD, Hasnain SE. The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect Genet Evol 2004; 4:301-8; PMID:15374527; http://dx.doi.org/10.1016/j.meegid.2004.04.003
  • Mascher T. Signaling diversity and evolution of extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 2013; 16:148-55; PMID:23466210; http://dx.doi.org/10.1016/j.mib.2013.02.001
  • Helmann JD. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 2002; 46:47-110; PMID:12073657; http://dx.doi.org/10.1016/S0065-2911(02)46002-X
  • Ades SE. Control of the alternative sigma factor sigmaE in Escherichia coli. Curr Opin Microbiol 2004; 7:157-62; PMID:15063853; http://dx.doi.org/10.1016/j.mib.2004.02.010
  • Alba BM, Gross CA. Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 2004; 52:613-9; PMID:15101969; http://dx.doi.org/10.1111/j.1365-2958.2003.03982.x
  • De Las Penas A, Connolly L, Gross CA. The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE. Mol Microbiol 1997; 24:373-85; PMID:9159523; http://dx.doi.org/10.1046/j.1365-2958.1997.3611718.x
  • Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 1997; 24:355-71; PMID:9159522; http://dx.doi.org/10.1046/j.1365-2958.1997.3601713.x
  • Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet JF. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics 2009; 9:2432-43; PMID:19343722; http://dx.doi.org/10.1002/pmic.200800794
  • Muller C, Bang IS, Velayudhan J, Karlinsey J, Papenfort K, Vogel J, Fang FC. Acid stress activation of the sigma(E) stress response in Salmonella enterica serovar Typhimurium. Mol Microbiol 2009; 71:1228-38; PMID:19170886; http://dx.doi.org/10.1111/j.1365-2958.2009.06597.x
  • Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 2002; 16:2156-68; PMID:12183369; http://dx.doi.org/10.1101/gad.1008902
  • Kanehara K, Ito K, Akiyama Y. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 2002; 16:2147-55; PMID:12183368; http://dx.doi.org/10.1101/gad.1002302
  • Chaba R, Grigorova IL, Flynn JM, Baker TA, Gross CA. Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 2007; 21:124-36; PMID:17210793; http://dx.doi.org/10.1101/gad.1496707
  • Rosenstein BJ, Zeitlin PL. Prognosis in cystic fibrosis. Curr Opin Pulm Med 1995; 1:444-9; PMID:9363080; http://dx.doi.org/10.1097/00063198-199511000-00003
  • Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74; PMID:8840786
  • Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194-222; PMID:11932230; http://dx.doi.org/10.1128/CMR.15.2.194-222.2002
  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005; 175:7512-8; PMID:16301659; http://dx.doi.org/10.4049/jimmunol.175.11.7512
  • Wozniak DJ, Ohman DE. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 1994; 176:6007-14; PMID:7928961
  • Damron FH, Goldberg JB. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol 2012; 84:595-607; PMID:22497280; http://dx.doi.org/10.1111/j.1365-2958.2012.08049.x
  • Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 1993; 90:8377-81; PMID:8378309; http://dx.doi.org/10.1073/pnas.90.18.8377
  • Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S, et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999; 145:1349-57; PMID:10411261; http://dx.doi.org/10.1099/13500872-145-6-1349
  • Ciofu O, Lee B, Johannesson M, Hermansen NO, Meyer P, Hoiby N. Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 2008; 154:103-13; PMID:18174130; http://dx.doi.org/10.1099/mic.0.2007/010421-0
  • Rowen DW, Deretic V. Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 2000; 36:314-27; PMID:10792719; http://dx.doi.org/10.1046/j.1365-2958.2000.01830.x
  • Reiling SA, Jansen JA, Henley BJ, Singh S, Chattin C, Chandler M, Rowen DW. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 2005; 151:2251-61; PMID:16000715; http://dx.doi.org/10.1099/mic.0.27772-0
  • Damron FH, Yu HD. Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J Bacteriol 2011; 193:286-91; PMID:21036998; http://dx.doi.org/10.1128/JB.01132-10
  • Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 2006; 62:412-26; PMID:17020580; http://dx.doi.org/10.1111/j.1365-2958.2006.05390.x
  • Wood LF, Ohman DE. Use of cell wall stress to characterize sigma 22 (AlgTU) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol Microbiol 2009; 72:183-201; PMID:19226327; http://dx.doi.org/10.1111/j.1365-2958.2009.06635.x
  • Damron FH, Davis MR, Jr., Withers TR, Ernst RK, Goldberg JB, Yu G, Yu HD. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol Microbiol 2011; 81:554-70; PMID:21631603; http://dx.doi.org/10.1111/j.1365-2958.2011.07715.x
  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175-87; PMID:15047518; http://dx.doi.org/10.1128/AAC.48.4.1175-1187.2004
  • Schobert M, Tielen P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 2010; 5:603-21; PMID:20353301; http://dx.doi.org/10.2217/fmb.10.16
  • Firoved AM, Ornatowski W, Deretic V. Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa: implications for inflammation in cystic fibrosis. Infect Immun 2004; 72:5012-8; PMID:15321993; http://dx.doi.org/10.1128/IAI.72.9.5012-5018.2004
  • Firoved AM, Wood SR, Ornatowski W, Deretic V, Timmins GS. Microarray analysis and functional characterization of the nitrosative stress response in nonmucoid and mucoid Pseudomonas aeruginosa. J Bacteriol 2004; 186:4046-50; PMID:15175322; http://dx.doi.org/10.1128/JB.186.12.4046-4050.2004
  • Hershberger CD, Ye RW, Parsek MR, Xie ZD, Chakrabarty AM. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc Natl Acad Sci U S A 1995; 92:7941-5; PMID:7644517; http://dx.doi.org/10.1073/pnas.92.17.7941
  • Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, Hentzer M, Andersen JB, Givskov M, Conese M, Doring G. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 2005; 192:410-9; PMID:15995954; http://dx.doi.org/10.1086/431516
  • Tart AH, Wolfgang MC, Wozniak DJ. The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol 2005; 187:7955-62; PMID:16291668; http://dx.doi.org/10.1128/JB.187.23.7955-7962.2005
  • Mahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994; 62:596-605; PMID:8300217
  • Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000; 12:420-30; PMID:10873830; http://dx.doi.org/10.1016/S0955-0674(00)00111-3
  • Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012; 10:336-51; PMID:22466878
  • Johnson TL, Abendroth J, Hol WG, Sandkvist M. Type II secretion: from structure to function. FEMS Microbiol Lett 2006; 255:175-86; PMID:16448494; http://dx.doi.org/10.1111/j.1574-6968.2006.00102.x
  • Sandkvist M. Type II secretion and pathogenesis. Infect Immun 2001; 69:3523-35; PMID:11349009; http://dx.doi.org/10.1128/IAI.69.6.3523-3535.2001
  • Kaper JB, Morris JG, Jr., Levine MM. Cholera. Clin Microbiol Rev 1995; 8:48-86; PMID:7704895
  • Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem 2011; 286:16555-66; PMID:21385872; http://dx.doi.org/10.1074/jbc.M110.211078
  • Overbye LJ, Sandkvist M, Bagdasarian M. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 1993; 132:101-6; PMID:8406031; http://dx.doi.org/10.1016/0378-1119(93)90520-D
  • Sikora AE, Beyhan S, Bagdasarian M, Yildiz FH, Sandkvist M. Cell envelope perturbation induces oxidative stress and changes in iron homeostasis in Vibrio cholerae. J Bacteriol 2009; 191:5398-408; PMID: 19542276; http://dx.doi.org/10.1128/JB.00092-09
  • Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95; PMID:17890307; http://dx.doi.org/10.1128/JB.00583-07
  • Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE. The type II secretion pathway in Vibrio cholerae is characterized by growth-phase dependent expression of exoprotein genes and is positively regulated by sigmaE. Infect Immun 2014; 82:2788-801; PMID:24733097; http://dx.doi.org/10.1128/IAI.01292-13.
  • Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol 2002; 10:179-86; PMID:11912025; http://dx.doi.org/10.1016/S0966-842X(02)02333-8
  • Dalebroux ZD, Miller SI. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 2014; 17:106-13; PMID: 24531506; http://dx.doi.org/10.1016/j.mib.2013.12.005
  • Kato A, Groisman EA, Howard Hughes Medical Institute. The PhoQPhoP regulatory network of Salmonella enterica. Adv Exp Med Biol 2008; 631:7-21; PMID:18792679; http://dx.doi.org/10.1007/978-0-387-78885-2_2
  • Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 2005; 3:36-46; PMID:15608698; http://dx.doi.org/10.1038/nrmicro1068
  • Coornaert A, Lu A, Mandin P, Springer M, Gottesman S, Guillier M. MicA sRNA links the PhoP regulon to cell envelope stress. Mol Microbiol 2010; 76:467-79; PMID:20345657; http://dx.doi.org/10.1111/j.1365-2958.2010.07115.x
  • Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. MicL, a new sigmaE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 2014; 28:1620-34; PMID:25030700; http://dx.doi.org/10.1101/gad.243485.114
  • Vogel J, Papenfort K. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 2006; 9:605-11; PMID:17055775; http://dx.doi.org/10.1016/j.mib.2006.10.006
  • Gogol EB, Rhodius VA, Papenfort K, Vogel J, Gross CA. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc Natl Acad Sci U S A 2011; 108:12875-80; PMID:21768388; http://dx.doi.org/10.1073/pnas.1109379108
  • DiGiuseppe PA, Silhavy TJ. Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 2003; 185:2432-40; PMID:12670966; http://dx.doi.org/10.1128/JB.185.8.2432-2440.2003
  • Isaac DD, Pinkner JS, Hultgren SJ, Silhavy TJ. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci U S A 2005; 102:17775-9; PMID:16303867; http://dx.doi.org/10.1073/pnas.0508936102
  • Hung DL, Raivio TL, Jones CH, Silhavy TJ, Hultgren SJ. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 2001; 20:1508-18; PMID:11285215; http://dx.doi.org/10.1093/emboj/20.7.1508
  • Hernday AD, Braaten BA, Broitman-Maduro G, Engelberts P, Low DA. Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol Cell 2004; 16:537-47; PMID:15546614; http://dx.doi.org/10.1016/j.molcel.2004.10.020
  • Blomfield IC. The regulation of pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol 2001; 45:1-49; PMID:11450107; http://dx.doi.org/10.1016/S0065-2911(01)45001-6
  • Hernday A, Krabbe M, Braaten B, Low D. Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16470-6; PMID:12202745; http://dx.doi.org/10.1073/pnas.182427199
  • Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 2004; 150:527-38; PMID:14993302; http://dx.doi.org/10.1099/mic.0.26740-0
  • Sohel I, Puente JL, Ramer SW, Bieber D, Wu CY, Schoolnik GK. Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol 1996; 178:2613-28; PMID:8626330
  • Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol 2005; 187:672-86; PMID:15629938; http://dx.doi.org/10.1128/JB.187.2.672-686.2005
  • Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS, Armstrong GD, Raivio TL. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 2010; 76:1095-110; PMID:20444097; http://dx.doi.org/10.1111/j.1365-2958.2010.07145.x
  • Carlsson KE, Liu J, Edqvist PJ, Francis MS. Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis. Infect Immun 2007; 75:3913-24; PMID:17517869; http://dx.doi.org/10.1128/IAI.01346-06
  • Liu J, Thanikkal EJ, Obi IR, Francis MS. Elevated CpxR∼P levels repress the Ysc-Yop type III secretion system of Yersinia pseudotuberculosis. Res Microbiol 2012; 163:518-30; PMID:22842077; http://dx.doi.org/10.1016/j.resmic.2012.07.010
  • Tobe T, Yoshikawa M, Mizuno T, Sasakawa C. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 1993; 175:6142-9; PMID:7691791
  • Nakayama S, Watanabe H. Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene. J Bacteriol 1998; 180:3522-8; PMID:9657992
  • Mitobe J, Arakawa E, Watanabe H. A sensor of the two-component system CpxA affects expression of the type III secretion system through posttranscriptional processing of InvE. J Bacteriol 2005; 187:107-13; PMID:15601694; http://dx.doi.org/10.1128/JB.187.1.107-113.2005
  • Isaac DT, Isberg R. Master manipulators: an update on Legionella pneumophila IcmDot translocated substrates and their host targets. Future Microbiol 2014; 9:343-59; PMID:24762308; http://dx.doi.org/10.2217/fmb.13.162
  • Gal-Mor O, Segal G. Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 2003; 185:4908-19; PMID:12897011; http://dx.doi.org/10.1128/JB.185.16.4908-4919.2003
  • Altman E, Segal G. The response regulator CpxR directly regulates expression of several Legionella pneumophila icmdot components as well as new translocated substrates. J Bacteriol 2008; 190:1985-96; PMID:18192394; http://dx.doi.org/10.1128/JB.01493-07
  • Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC–> YojN–> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 2001; 40:440-50; PMID:11309126; http://dx.doi.org/10.1046/j.1365-2958.2001.02393.x
  • Chen MH, Takeda S, Yamada H, Ishii Y, Yamashino T, Mizuno T. Characterization of the RcsC–>YojN–>RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci Biotechnol Biochem 2001; 65:2364-7; PMID:11758943; http://dx.doi.org/10.1271/bbb.65.2364
  • Stout V, Torres-Cabassa A, Maurizi MR, Gutnick D, Gottesman S. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 1991; 173:1738-47; PMID:1999391
  • Flores-Kim J, Darwin AJ. Links between type III secretion and extracytoplasmic stress responses in Yersinia. Front Cell Infect Microbiol 2012; 2:125; PMID:23087910
  • Gottesman S, Trisler P, Torres-Cabassa A. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 1985; 162:1111-9; PMID:3888955
  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 2004; 72:7107-14; PMID:15557634; http://dx.doi.org/10.1128/IAI.72.12.7107-7114.2004
  • Farris C, Sanowar S, Bader MW, Pfuetzner R, Miller SI. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J Bacteriol 2010; 192:4894-903; PMID:20675476; http://dx.doi.org/10.1128/JB.00505-10
  • Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006; 75:39-68; PMID:16756484; http://dx.doi.org/10.1146/annurev.biochem.75.103004.142545
  • Jayaratne P, Keenleyside WJ, MacLachlan PR, Dodgson C, Whitfield C. Characterization of rcsB and rcsC from Escherichia coli O9:K30:H12 and examination of the role of the rcs regulatory system in expression of group I capsular polysaccharides. J Bacteriol 1993; 175:5384-94; PMID:8366025
  • Rahn A, Whitfield C. Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 2003; 47:1045-60; PMID:12581358; http://dx.doi.org/10.1046/j.1365-2958.2003.03354.x
  • Mouslim C, Groisman EA. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 2003; 47:335-44; PMID:12519186; http://dx.doi.org/10.1046/j.1365-2958.2003.03318.x
  • Mouslim C, Latifi T, Groisman EA. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem 2003; 278:50588-95; PMID:14514676; http://dx.doi.org/10.1074/jbc.M309433200
  • Wehland M, Bernhard F. The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 2000; 275:7013-20; PMID:10702265; http://dx.doi.org/10.1074/jbc.275.10.7013
  • Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107-18; PMID:23302790; http://dx.doi.org/10.4161/viru.22718
  • Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 2010; 192:3144-58; PMID:20382770; http://dx.doi.org/10.1128/JB.00031-10
  • Lai YC, Peng HL, Chang HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 2003; 185:788-800; PMID:12533454; http://dx.doi.org/10.1128/JB.185.3.788-800.2003
  • Yu WL, Ko WC, Cheng KC, Lee HC, Ke DS, Lee CC, Fung CP, Chuang YC. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 2006; 42:1351-8; PMID:16619144; http://dx.doi.org/10.1086/503420
  • Wang Q, Zhao Y, McClelland M, Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 2007; 189:8447-57; PMID:17905992; http://dx.doi.org/10.1128/JB.01198-07
  • Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 2003; 49:823-32; PMID:12864862; http://dx.doi.org/10.1046/j.1365-2958.2003.03601.x
  • Wang Q, Harshey RM. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility. Mol Microbiol 2009; 74:71-84; PMID:19703110; http://dx.doi.org/10.1111/j.1365-2958.2009.06851.x
  • Venecia K, Young GM. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect Immun 2005; 73:5961-77; PMID:16113317; http://dx.doi.org/10.1128/IAI.73.9.5961-5977.2005
  • Walker KA, Miller VL. Synchronous gene expression of the Yersinia enterocolitica Ysa type III secretion system and its effectors. J Bacteriol 2009; 191:1816-26; PMID:19124573; http://dx.doi.org/10.1128/JB.01402-08
  • Walker KA, Maltez V, Hall JD, Vitko NP, Miller VL. A Phenotype at Last: Essential Role for the Yersinia enterocolitica Ysa Type III Secretion System in a Drosophila S2 cell model. Infect Immun 2013; 81:2478-87; PMID:23630961; http://dx.doi.org/10.1128/IAI.01454-12
  • Li Y, Hu Y, Francis MS, Chen S. RcsB positively regulates the Yersinia Ysc-Yop type III secretion system by activating expression of the master transcriptional regulator LcrF. Environ Microbiol 2014; In press; PMID:25039908; http://dx.doi.org/10.11111462-2920.12556
  • Foster SJ, Poham DL. Structure and synthesis of cell wall, spore cortex, teichoic acid, S-layers and capsules. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and its closest relatives: From genes to cells. Washington, DC: ASM Press, 2002:21-41.
  • Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:686-723; PMID:14665680; http://dx.doi.org/10.1128/MMBR.67.4.686-723.2003
  • Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42; PMID: 24415723; http://dx.doi.org/10.1128/JB.01155-13
  • Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46; PMID:18173394; http://dx.doi.org/10.1111/j.1574-6976.2007.00091.x
  • Laubacher ME, Ades SE. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 2008; 190:2065-74; PMID: 18192383; http://dx.doi.org/10.1128/JB.01740-07
  • Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol 2013; 195:1869-74; PMID: 23335416; http://dx.doi.org/10.1128/JB.02197-12
  • Cao M, Helmann JD. The Bacillus subtilis extracytoplasmic-function sigmaX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 2004; 186:1136-46; PMID:14762009; http://dx.doi.org/10.1128/JB.186.4.1136-1146.2004
  • Eiamphungporn W, Helmann JD. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 2008; 67:830-48; PMID:18179421; http://dx.doi.org/10.1111/j.1365-2958.2007.06090.x
  • Guariglia-Oropeza V, Helmann JD. Bacillus subtilis sigma(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids. J Bacteriol 2011; 193:6223-32; PMID:21926231; http://dx.doi.org/10.1128/JB.06023-11
  • Helmann JD. Deciphering a complex genetic regulatory network: the Bacillus subtilis sigmaW protein and intrinsic resistance to antimicrobial compounds. Sci Prog 2006; 89:243-66; PMID:17338440; http://dx.doi.org/10.3184/003685006783238290
  • Kingston AW, Liao X, Helmann JD. Contributions of the sigma(W), sigma(M) and sigma(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18; PMID:23980836; http://dx.doi.org/10.1111/mmi.12380
  • Jordan S, Junker A, Helmann JD, Mascher T. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 2006; 188:5153-66; PMID:16816187; http://dx.doi.org/10.1128/JB.00310-06
  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 2007; 66:1136-47; PMID:17961141; http://dx.doi.org/10.1111/j.1365-2958.2007.05986.x
  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M. Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A 2007; 104:9469-74; PMID:17517597; http://dx.doi.org/10.1073/pnas.0702159104
  • Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 2007; 5:721-6; PMID:17694072; http://dx.doi.org/10.1038/nrmicro1743
  • Rice KC, Bayles KW. Death's toolbox: examining the molecular components of bacterial programmed cell death. Mol Microbiol 2003; 50:729-38; PMID: 14617136; http://dx.doi.org/10.1046/j.1365-2958.2003.t01-1-03720.x
  • Patton TG, Yang SJ, Bayles KW. The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Mol Microbiol 2006; 59:1395-404; PMID:16468984; http://dx.doi.org/10.1111/j.1365-2958.2006.05034.x
  • Yang SJ, Xiong YQ, Yeaman MR, Bayles KW, Abdelhady W, Bayer AS. Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57:3875-82; PMID:23733465; http://dx.doi.org/10.1128/AAC.00412-13
  • Brocker M, Mack C, Bott M. Target genes, consensus binding site, and role of phosphorylation for the response regulator MtrA of Corynebacterium glutamicum. J Bacteriol 2011; 193:1237-49; PMID:21183673; http://dx.doi.org/10.1128/JB.01032-10
  • Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L. A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol Microbiol 2010; 76:348-64; PMID:20233304; http://dx.doi.org/10.1111/j.1365-2958.2010.07110.x
  • Bansal-Mutalik R, Nikaido H. Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction. Proc Natl Acad Sci U S A 2011; 108:15360-5; PMID:21876124; http://dx.doi.org/10.1073/pnas.1112572108
  • Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 2014; 111:4958-63; PMID:24639491; http://dx.doi.org/10.1073/pnas.1403078111
  • Winkler ME, Hoch JA. Essentiality, bypass, and targeting of the YycFG (VicRK) two-component regulatory system in gram-positive bacteria. J Bacteriol 2008; 190:2645-8; PMID:18245295; http://dx.doi.org/10.1128/JB.01682-07
  • Fischer W. Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 1988; 29:233-302; PMID:3289326; http://dx.doi.org/10.1016/S0065-2911(08)60349-5
  • Neuhaus FC, Heaton MP, Debabov DV, Zhang Q. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb Drug Resist 1996; 2:77-84; PMID:9158726; http://dx.doi.org/10.1089/mdr.1996.2.77
  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 1995; 270:15598-606; PMID:7797557; http://dx.doi.org/10.1074/jbc.270.26.15598
  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 2002; 43:1-14; PMID:11849532; http://dx.doi.org/10.1046/j.1365-2958.2002.02723.x
  • Abi Khattar Z, Rejasse A, Destoumieux-Garzon D, Escoubas JM, Sanchis V, Lereclus D, Givaudan A, Kallassy M, Nielsen-Leroux C, Gaudriault S. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 2009; 191:7063-73; PMID:19767427; http://dx.doi.org/10.1128/JB.00892-09
  • Fittipaldi N, Sekizaki T, Takamatsu D, Harel J, Dominguez-Punaro Mde L, Von Aulock S, Draing C, Marois C, Kobisch M, Gottschalk M. D-alanylation of lipoteichoic acid contributes to the virulence of Streptococcus suis. Infect Immun 2008; 76:3587-94; PMID:18474639; http://dx.doi.org/10.1128/IAI.01568-07
  • Kovacs M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Bruckner R. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 2006; 188:5797-805; PMID:16885447; http://dx.doi.org/10.1128/JB.00336-06
  • McBride SM, Sonenshein AL. The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 2011; 157:1457-65; PMID:21330441; http://dx.doi.org/10.1099/mic.0.045997-0
  • Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cuot P. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 2003; 49:1615-25; PMID:12950925; http://dx.doi.org/10.1046/j.1365-2958.2003.03655.x
  • Simanski M, Glaser R, Koten B, Meyer-Hoffert U, Wanner S, Weidenmaier C, Peschel A, Harder J. Staphylococcus aureus subverts cutaneous defense by D-alanylation of teichoic acids. Exp Dermatol 2013; 22:294-6; PMID:23528217; http://dx.doi.org/10.1111/exd.12114
  • Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 2005; 73:8033-8; PMID:16299297; http://dx.doi.org/10.1128/IAI.73.12.8033-8038.2005
  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274:8405-10; PMID:10085071; http://dx.doi.org/10.1074/jbc.274.13.8405
  • Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005; 57:1367-80; PMID:16102006; http://dx.doi.org/10.1111/j.1365-2958.2005.04776.x
  • Houtsmuller UM, van Deenen LL. On the amino acid esters of phosphatidyl glycerol from bacteria. Biochim Biophys Acta 1965; 106:564-76; PMID: 4956500; http://dx.doi.org/10.1016/0005-2760(65)90072-X
  • Houtsmuller UM, Van D. On the Accumulation of Amino Acid Derivatives of Phosphatidylglycerol in Bacteria. Biochim Biophys Acta 1964; 84:96-8; PMID:14124763
  • Roy H. Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life 2009; 61:940-53; PMID:19787708; http://dx.doi.org/10.1002/iub.240
  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jansch L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 2006; 62:1325-39; PMID:17042784; http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x
  • Fischer W, Leopold K. Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 1999; 49 Pt 2:653-62; PMID:10408878; http://dx.doi.org/10.1099/00207713-49-2-653
  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 2001; 193:1067-76; PMID:11342591; http://dx.doi.org/10.1084/jem.193.9.1067
  • Roy H, Ibba M. RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A 2008; 105:4667-72; PMID:18305156; http://dx.doi.org/10.1073/pnas.0800006105
  • Dare K, Shepherd J, Roy H, Seveau S, Ibba M. LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence 2014; 5:534-46; PMID:24603093; http://dx.doi.org/10.4161/viru.28359
  • Mascher T. Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 2006; 264:133-44; PMID:17064367; http://dx.doi.org/10.1111/j.1574-6968.2006.00444.x
  • Hiron A, Falord M, Valle J, Debarbouille M, Msadek T. Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraSBraR two-component system (SA2417SA2418) and both the BraDBraE and VraDVraE ABC transporters. Mol Microbiol 2011; 81:602-22; PMID:21696458; http://dx.doi.org/10.1111/j.1365-2958.2011.07735.x
  • Falord M, Karimova G, Hiron A, Msadek T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:1047-58; PMID:22123691; http://dx.doi.org/10.1128/AAC.05054-11
  • Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 2003; 50:1591-604; PMID: 14651641; http://dx.doi.org/10.1046/j.1365-2958.2003.03786.x
  • Ohki R, Giyanto, Tateno K, Masuyama W, Moriya S, Kobayashi K, Ogasawara N. The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 2003; 49:1135-44; PMID:12890034; http://dx.doi.org/10.1046/j.1365-2958.2003.03653.x
  • Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL. The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 2012; 80:74-81; PMID:21986630; http://dx.doi.org/10.1128/IAI.05669-11
  • Falord M, Mader U, Hiron A, Debarbouille M, Msadek T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 2011; 6:e21323; PMID:21765893; http://dx.doi.org/10.1371/journal.pone.0021323
  • Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 2007; 3:e102; PMID:17676995; http://dx.doi.org/10.1371/journal.ppat.0030102
  • Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A. The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 2008; 8:85; PMID:18518949; http://dx.doi.org/10.1186/1471-2180-8-85
  • Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375-83; PMID:9829949
  • Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 2008; 70:1307-22; PMID: 19019149; http://dx.doi.org/10.1111/j.1365-2958.2008.06483.x
  • Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 2007; 65:180-200; PMID:17581128; http://dx.doi.org/10.1111/j.1365-2958.2007.05782.x
  • Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalKWalR (YycGYycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 2007; 189:8257-69; PMID:17827301; http://dx.doi.org/10.1128/JB.00645-07
  • Dubrac S, Msadek T. Tearing down the wall: peptidoglycan metabolism and the WalKWalR (YycGYycF) essential two-component system. Adv Exp Med Biol 2008; 631:214-28; PMID: 18792692; http://dx.doi.org/10.1007/978-0-387-78885-2_15
  • Fukushima T, Szurmant H, Kim EJ, Perego M, Hoch JA. A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis. Mol Microbiol 2008; 69:621-32; PMID:18573169; http://dx.doi.org/10.1111/j.1365-2958.2008.06308.x
  • Fukuchi K, Kasahara Y, Asai K, Kobayashi K, Moriya S, Ogasawara N. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 2000; 146:1573-83; PMID:10878122
  • Ng WL, Robertson GT, Kazmierczak KM, Zhao J, Gilmour R, Winkler ME. Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 2003; 50:1647-63; PMID:14651645; http://dx.doi.org/10.1046/j.1365-2958.2003.03806.x
  • Mohedano ML, Overweg K, de la Fuente A, Reuter M, Altabe S, Mulholland F, de Mendoza D, Lopez P, Wells JM. Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 2005; 187:2357-67; PMID:15774879; http://dx.doi.org/10.1128/JB.187.7.2357-2367.2005
  • Ng WL, Tsui HC, Winkler ME. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 2005; 187:7444-59; PMID:16237028; http://dx.doi.org/10.1128/JB.187.21.7444-7459.2005
  • Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J, Hung DC, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 2005; 187:4064-76; PMID:15937169; http://dx.doi.org/10.1128/JB.187.12.4064-4076.2005
  • Liu M, Hanks TS, Zhang J, McClure MJ, Siemsen DW, Elser JL, Quinn MT, Lei B. Defects in ex vivo and in vivo growth and sensitivity to osmotic stress of group A Streptococcus caused by interruption of response regulator gene vicR. Microbiology 2006; 152:967-78; PMID:16549661; http://dx.doi.org/10.1099/mic.0.28706-0
  • Delaune A, Dubrac S, Blanchet C, Poupel O, Mader U, Hiron A, Leduc A, Fitting C, Nicolas P, Cavaillon JM, et al. The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect Immun 2012; 80:3438-53; PMID:22825451; http://dx.doi.org/10.1128/IAI.00195-12
  • Liang X, Yu C, Sun J, Liu H, Landwehr C, Holmes D, Ji Y. Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun 2006; 74:4655-65; PMID:16861653; http://dx.doi.org/10.1128/IAI.00322-06
  • Steinhuber A, Goerke C, Bayer MG, Doring G, Wolz C. Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on expression of virulence factors. J Bacteriol 2003; 185:6278-86; PMID:14563862; http://dx.doi.org/10.1128/JB.185.21.6278-6286.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.