4,629
Views
43
CrossRef citations to date
0
Altmetric
REVIEWS

Thermal control of virulence factors in bacteria: A hot topic

, &
Pages 852-862 | Received 16 Apr 2014, Accepted 26 Sep 2014, Published online: 20 Jan 2015

References

  • Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, Mounier J, Prévost M-C, Sansonetti P, Tang CM. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 2010; 465:355-8; PMID:20436458; http://dx.doi.org/10.1038/nature08970
  • Smirnova A V, Wang L, Rohde B, Budde I, Weingart H, Ullrich MS. Control of temperature-responsive synthesis of the phytotoxin coronatine in Pseudomonas syringae by the unconventional two-component system CorRPS. J Mol Microbiol Biotechnol 2002; 4:191-6; PMID:11931546.
  • Starke M, Fuchs TM. YmoA negatively controls the expression of insecticidal genes in Yersinia enterocolitica. Mol Microbiol 2014; 92:287-301; PMID:24548183; http://dx.doi.org/10.1111/mmi.12554
  • Starke M, Richter M, Fuchs TM. The insecticidal toxin genes of Yersinia enterocolitica are activated by the thermolabile LTTR-like regulator TcaR2 at low temperatures. Mol Microbiol 2013; 89:596-611; PMID:23772992; http://dx.doi.org/10.1111/mmi.12296
  • Ye F, Brauer T, Niehus E, Drlica K, Josenhans C, Suerbaum S. Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling. Int J Med Microbiol 2007; 297:65-81; PMID:17276136; http://dx.doi.org/10.1016/j.ijmm.2006.11.006
  • Eriksson S, Hurme R, Rhen M. Low-temperature sensors in bacteria. Philos Trans R Soc Lond B Biol Sci 2002; 357:887-93; PMID:12171652; http://dx.doi.org/10.1098/rstb.2002.1077
  • Kelly A, Conway C, O Cróinín T, Smith SGJ, Dorman CJ. DNA supercoiling and the Lrp protein determine the directionality of fim switch DNA inversion in Escherichia coli K-12. J Bacteriol 2006; 188:5356-63; PMID:16855224; http://dx.doi.org/10.1128/JB.00344-06
  • O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82; http://dx.doi.org/10.1111/j.1365-2958.2006.05416.x
  • Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004; 51:523-37; PMID:14756791; http://dx.doi.org/10.1046/j.1365-2958.2003.03848.x
  • Tendeng C, Bertin PN. H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol 2003; 11:511-8; PMID:14607068; http://dx.doi.org/10.1016/j.tim.2003.09.005
  • Tobe T, Yoshikawa M, Mizuno T, Sasakawa C. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 1993; 175:6142-9; PMID:7691791.
  • Müller CM, Dobrindt U, Nagy G, Emödy L, Uhlin BE, Hacker J. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J Bacteriol 2006; 188:5428-38; PMID:16855232; http://dx.doi.org/10.1128/JB.01956-05
  • Nye MB, Pfau JD, Skorupski K, Taylor RK. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 2000; 182:4295-303; PMID:10894740; http://dx.doi.org/10.1128/JB.182.15.4295-4303.2000
  • Mühldorfer I, Hacker J, Keusch GT, Acheson DW, Tschäpe H, Kane A V, Ritter A, Olschläger T, Donohue-Rolfe A. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 1996; 64:495-502; PMID:8550198.
  • Dame RT, Wyman C, Goosen N. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 2001; 83:231-4; PMID:11278073; http://dx.doi.org/10.1016/S0300-9084(00)01213-X
  • Dame RT, Wyman C, Wurm R, Wagner R, Goosen N. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 2002; 277:2146-50; PMID:11714691; http://dx.doi.org/10.1074/jbc.C100603200
  • Stella S, Falconi M, Lammi M, Gualerzi CO, Pon CL. Environmental control of the in vivo oligomerization of nucleoid protein H-NS. J Mol Biol 2006; 355:169-74; PMID:16303134; http://dx.doi.org/10.1016/j.jmb.2005.10.034
  • Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JCD, Ladbury JE. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 2005; 391:203-13.; .
  • Akbar S, Schechter LM, Lostroh CP, Lee CA. AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium. Mol Microbiol 2003; 47:715-28; PMID:12535071; http://dx.doi.org/10.1046/j.1365-2958.2003.03322.x
  • Madrid C, Nieto JM, Paytubi S, Falconi M, Gualerzi CO, Juárez A. Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin. J Bacteriol 2002; 184:5058-66; PMID:12193622; http://dx.doi.org/10.1128/JB.184.18.5058-5066.2002
  • Johansson J. RNA thermosensors in bacterial pathogens. Contrib Microbiol 2009; 16:150-60; PMID:19494584; http://dx.doi.org/10.1159/000219378
  • Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 2012; 10:255-65; PMID:22421878; http://dx.doi.org/10.1038/nrmicro2730
  • Chowdhury S, Maris C, Allain FH-T, Narberhaus F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J 2006; 25:2487-97; PMID:16710302; http://dx.doi.org/10.1038/sj.emboj.7601128
  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 2007; 65:413-24; PMID:17630972; http://dx.doi.org/10.1111/j.1365-2958.2007.05794.x
  • Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 2011; 39:2855-68; PMID:21131278; http://dx.doi.org/10.1093/nar/gkq1252
  • Loh E, Memarpour F, Vaitkevicius K, Kallipolitis BH, Johansson J, Sondén B. An unstructured 5’-coding region of the prfA mRNA is required for efficient translation. Nucleic Acids Res 2012; 40:1818-27; PMID:22053088; http://dx.doi.org/10.1093/nar/gkr850
  • Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CO, Pon CL. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 2010; 37:21-33; PMID:20129052; http://dx.doi.org/10.1016/j.molcel.2009.11.033
  • Mao Y, Najafabadi HS, Salavati R. Genome-wide computational identification of functional RNA elements in Trypanosoma brucei. BMC Genomics 2009; 10:355; PMID:19653906; http://dx.doi.org/10.1186/1471-2164-10-355
  • Rabani M, Kertesz M, Segal E. Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 2008; 105:14885-90; PMID:18815376; http://dx.doi.org/10.1073/pnas.0803169105
  • Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009; 139:770-9; PMID:19914169; http://dx.doi.org/10.1016/j.cell.2009.08.046
  • Waters LSS. Regulatory RNAs in Bacteria. Cell 2009; 136:615-28; PMID:19239884; http://dx.doi.org/10.1016/j.cell.2009.01.043
  • Laalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2014; 71:1799-828; PMID:24064983; http://dx.doi.org/10.1007/s00018-013-1472-4
  • Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J. RNAs: regulators of bacterial virulence. Nat Rev Microbiol 2010; 8:857-66; PMID:21079634; http://dx.doi.org/10.1038/nrmicro2457
  • Schuck A, Diwa A, Belasco JG. RNase E autoregulates its synthesis in Escherichia coli by binding directly to a stem-loop in the rne 5’ untranslated region. Mol Microbiol 2009; 72:470-8; PMID:19320830; http://dx.doi.org/10.1111/j.1365-2958.2009.06662.x
  • Caron M-P, Lafontaine DA, Massé E. Small RNA-mediated regulation at the level of transcript stability. RNA Biol 7:140-4; PMID:20220305; http://dx.doi.org/10.4161/rna.7.2.11056
  • Pichon C, du Merle L, Lequeutre I, Le Bouguénec C. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains. Nucleic Acids Res 2013; 41:5469-82; PMID:23563153; http://dx.doi.org/10.1093/nar/gkt208
  • Beauregard A, Smith EA, Petrone BL, Singh N, Karch C, McDonough KA, Wade JT. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol 2013; 10:397-405; PMID:23324607; http://dx.doi.org/10.4161/rna.23590
  • Mitobe J, Morita-Ishihara T, Ishihama A, Watanabe H. Involvement of RNA-binding protein Hfq in the post-transcriptional regulation of invE gene expression in Shigella sonnei. J Biol Chem 2008; 283:5738-47; PMID:18156173; http://dx.doi.org/10.1074/jbc.M710108200
  • Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9:578-89; PMID:21760622; http://dx.doi.org/10.1038/nrmicro2615
  • Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 2010; 13:24-33; PMID:20080057; http://dx.doi.org/10.1016/j.mib.2010.01.001
  • Fantappiè L, Metruccio MME, Seib KL, Oriente F, Cartocci E, Ferlicca F, Giuliani MM, Scarlato V, Delany I. The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun 2009; 77:1842-53; http://dx.doi.org/10.1128/IAI.01216-08
  • Quade N, Mendonca C, Herbst K, Heroven AK, Ritter C, Heinz DW, Dersch P. Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia. J Biol Chem 2012; 287:35796-803; PMID:22936808; http://dx.doi.org/10.1074/jbc.M112.379156
  • Kamp HD, Higgins DE. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog 2011; 7:e1002153; PMID:21829361; http://dx.doi.org/10.1371/journal.ppat.1002153
  • Rothenbacher FP, Zhu J. Efficient responses to host and bacterial signals during Vibrio cholerae colonization. Gut Microbes 5:120-8; PMID:24256715; http://dx.doi.org/10.4161/gmic.26944
  • Johansson J, Mandin P, Renzoni A. An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes. Cell 2002; 110:551-61; PMID:12230973; http://dx.doi.org/10.1016/S0092-8674(02)00905-4
  • Marceau M. Transcriptional regulation in Yersinia: an update. Curr Issues Mol Biol 2005; 7:151-77; PMID:16053248.
  • Han Y, Zhou D, Pang X, Song Y, Zhang L, Bao J, Tong Z, Wang J, Guo Z, Zhai J, et al. Microarray analysis of temperature-induced transcriptome of Yersinia pestis. Microbiol Immunol 2004; 48:791-805; PMID:15557737; http://dx.doi.org/10.1111/j.1348-0421.2004.tb03605.x
  • Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, et al. Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence. PLoS Pathog 2012; 8:e1002518; PMID:22359501; http://dx.doi.org/10.1371/journal.ppat.1002518
  • Grosdent N, Maridonneau-Parini I, Sory M-P, Cornelis GR. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect Immun 2002; 70:4165-76; PMID:12117925; http://dx.doi.org/10.1128/IAI.70.8.4165-4176.2002
  • Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL. The RovA regulons of Yersinia enterocolitica and Yersinia pestis are distinct: evidence that many RovA-regulated genes were acquired more recently than the core genome. Mol Microbiol 2007; 66:189-205; PMID:17784909; http://dx.doi.org/10.1111/j.1365-2958.2007.05907.x
  • Wagner NJ, Lin CP, Borst LB, Miller VL. YaxAB, a Yersinia enterocolitica pore-forming toxin regulated by RovA. Infect Immun 2013; 81:4208-19; PMID:24002058; http://dx.doi.org/10.1128/IAI.00781-13
  • Nagel G, Lahrz A, Dersch P. Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol 2001; 41:1249-69; PMID:11580832; http://dx.doi.org/10.1046/j.1365-2958.2001.02522.x
  • Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 2006; 103:13514-9; PMID:16938880; http://dx.doi.org/10.1073/pnas.0603456103
  • Heroven AK, Böhme K, Tran-Winkler H, Dersch P. Regulatory elements implicated in the environmental control of invasin expression in enteropathogenic Yersinia. Adv Exp Med Biol 2007; 603:156-66; PMID:17966412; http://dx.doi.org/10.1007/978-0-387-72124-8_13
  • Herbst K, Bujara M, Heroven AK, Opitz W, Weichert M, Zimmermann A, Dersch P. Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog 2009; 5:e1000435; PMID:19468295; http://dx.doi.org/10.1371/journal.ppat.1000435
  • Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annu Rev Microbiol 2012; 66:325-47; PMID:22746333; http://dx.doi.org/10.1146/annurev-micro-092611-150039
  • Scarlato V, Aricò B, Prugnola A, Rappuoli R. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 1991; 10:3971-5; PMID:1718746.
  • Mishra M, Parise G, Jackson KD, Wozniak DJ, Deora R. The BvgAS signal transduction system regulates biofilm development in Bordetella. J Bacteriol 2005; 187:1474-84; PMID:15687212; http://dx.doi.org/10.1128/JB.187.4.1474-1484.2005
  • Manetti R, Aricò B, Rappuoli R, Scarlato V. Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 1994; 150:123-7; PMID:7959037; http://dx.doi.org/10.1016/0378-1119(94)90870-2
  • Ingmer H, Brøndsted L. Proteases in bacterial pathogenesis. Res Microbiol 2009; 160:704-10; PMID:19778606; http://dx.doi.org/10.1016/j.resmic.2009.08.017
  • Gophna U, Ron EZ. Virulence and the heat shock response. Int J Med Microbiol 2003; 292:453-61; PMID:12635928; http://dx.doi.org/10.1078/1438-4221-00230
  • Guisbert E, Yura T, Rhodius V a, Gross C a. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008; 72:545-54; PMID:18772288; http://dx.doi.org/10.1128/MMBR.00007-08
  • Nakahigashi K, Yanagi H, Yura T. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 1995; 23:4383-90; PMID:7501460.
  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 1999; 13:655-65; PMID:10090722; http://dx.doi.org/10.1101/gad.13.6.655
  • Guisbert E, Herman C, Lu CZ, Gross C a. A chaperone network controls the heat shock response in E. coli. Genes Dev 2004; 18:2812-21; PMID:15545634; http://dx.doi.org/10.1101/gad.1219204
  • Herman C, Thévenet D, D’Ari R, Bouloc P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 1995; 92:3516-20; PMID:7724592; http://dx.doi.org/10.1073/pnas.92.8.3516
  • Parsot C, Mekalanos JJ. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc Natl Acad Sci U S A 1990; 87:9898-902; PMID:2124707; http://dx.doi.org/10.1073/pnas.87.24.9898
  • Dobrindt U, Hacker J. Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536. Mol Genet Genomics 2001; 265:895-904; PMID:11523807; http://dx.doi.org/10.1007/s004380100486
  • Dobrindt U, Janke B, Piechaczek K, Nagy G, Ziebuhr W, Fischer G, Schierhorn A, Hecker M, Blum-Oehler G, Hacker J. Toxin genes on pathogenicity islands: impact for microbial evolution. Int J Med Microbiol 2000; 290:307-11; PMID:11111903; http://dx.doi.org/10.1016/S1438-4221(00)80028-4
  • Hecker M, Schumann W, Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 1996; 19:417-28; PMID:8830234; http://dx.doi.org/10.1046/j.1365-2958.1996.396932.x
  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 1994; 140:741-52; PMID:8012595; http://dx.doi.org/10.1099/00221287-140-4-741
  • Maul B, Völker U, Riethdorf S, Engelmann S, Hecker M. sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 1995; 248:114-20; PMID:7651322; http://dx.doi.org/10.1007/BF02456620
  • Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 2001; 183:5171-9; PMID:11489871; http://dx.doi.org/10.1128/JB.183.17.5171-5179.2001
  • Chan PF, Foster SJ. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J Bacteriol 1998; 180:6232-41; PMID:9829932.
  • Chastanet A, Fert J, Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 2003; 47:1061-73; PMID:12581359; http://dx.doi.org/10.1046/j.1365-2958.2003.03355.x
  • De Oliveira NEM, Abranches J, Gaca AO, Laport MS, Damaso CR, Bastos M do C, de F, Lemos JA, Giambiagi-deMarval M. clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology 2011; 157:656-65; PMID:21148206; http://dx.doi.org/10.1099/mic.0.041897-0
  • Elsholz AKW, Michalik S, Zühlke D, Hecker M, Gerth U. CtsR, the Gram-positive master regulator of protein quality control, feels the heat. EMBO J 2010; 29:3621-9; PMID:20852588; http://dx.doi.org/10.1038/emboj.2010.228
  • Farrand AJ, Reniere ML, Ingmer H, Frees D, Skaar EP. Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. J Bacteriol 2013; 195:5041-50; PMID:23995637; http://dx.doi.org/10.1128/JB.00505-13
  • Knudsen GM, Olsen JE, Aabo S, Barrow P, Rychlik I, Thomsen LE. ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes. Microbiology 2013; 159:1497-509; PMID:23676436; http://dx.doi.org/10.1099/mic.0.065797-0
  • Meibom KL, Dubail I, Dupuis M, Barel M, Lenco J, Stulik J, Golovliov I, Sjöstedt A, Charbit A. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 2008; 67:1384-401; PMID:18284578; http://dx.doi.org/10.1111/j.1365-2958.2008.06139.x
  • Chastanet A, Derre I, Nair S, Msadek T. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 2004; 186:1165-74; PMID:14762012; http://dx.doi.org/10.1128/JB.186.4.1165-1174.2004
  • Hanawa T, Fukuda M, Kawakami H, Hirano H, Kamiya S, Yamamoto T. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 1999; 4:118-28; PMID:10547061.
  • Salman H, Libchaber A. A concentration-dependent switch in the bacterial response to temperature. Nat Cell Biol 2007; 9:1098-100; PMID:17694049; http://dx.doi.org/10.1038/ncb1632
  • Paster E, Ryu WS. The thermal impulse response of Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:5373-7; PMID:18385380; http://dx.doi.org/10.1073/pnas.0709903105
  • Maeda K, Imae Y, Shioi JI, Oosawa F. Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 1976; 127:1039-46; PMID:783127
  • Maeda K, Imae Y. Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci U S A 1979; 76:91-5; PMID:370831; http://dx.doi.org/10.1073/pnas.76.1.91
  • Wadhams GH, Armitage JP. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 2004; 5:1024-37; PMID:15573139; http://dx.doi.org/10.1038/nrm1524
  • Hazelbauer GL, Falke JJ, Parkinson JS. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 2008; 33:9-19; PMID:18165013; http://dx.doi.org/10.1016/j.tibs.2007.09.014
  • Nara T, Kawagishi I, Nishiyama S, Homma M, Imae Y. Modulation of the thermosensing profile of the Escherichia coli aspartate receptor tar by covalent modification of its methyl-accepting sites. J Biol Chem 1996; 271:17932-6; PMID:8663384; http://dx.doi.org/10.1074/jbc.271.30.17932
  • Tagkopoulos I, Liu Y-C, Tavazoie S. Predictive behavior within microbial genetic networks. Science 2008; 320:1313-7; PMID:18467556; http://dx.doi.org/10.1126/science.1154456
  • Ternan NG, Jain S, Srivastava M, McMullan G. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630. PLoS One 2012; 7:e42410; PMID:22860125; http://dx.doi.org/10.1371/journal.pone.0042410
  • Xu S, Peng Z, Cui B, Wang T, Song Y, Zhang L, Wei G, Wang Y, Shen X. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ Microbiol 2014; 16:1090-104; PMID:23957589; http://dx.doi.org/10.1111/1462-2920.12222
  • Ding L, Wang Y, Hu Y, Atkinson S, Williams P, Chen S. Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. Microbiology 2009; 155:1890-900; PMID:19383707; http://dx.doi.org/10.1099/mic.0.026294-0
  • Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA. Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol Microbiol 1996; 19:1061-71; PMID:8830263; http://dx.doi.org/10.1046/j.1365-2958.1996.452978.x
  • Rohde JR, Fox JM, Minnich SA. Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol 1994; 12:187-99; PMID:8057844; http://dx.doi.org/10.1111/j.1365-2958.1994.tb01008.x
  • Guerry P, Alm RA, Power ME, Logan SM, Trust TJ. Role of two flagellin genes in Campylobacter motility. J Bacteriol 1991; 173:4757-64; PMID:1856171.
  • Alm RA, Guerry P, Trust TJ. The Campylobacter sigma 54 flaB flagellin promoter is subject to environmental regulation. J Bacteriol 1993; 175:4448-55; PMID:8331072.
  • Wösten MMSM, van Dijk L, Veenendaal AKJ, de Zoete MR, Bleumink-Pluijm NMC, van Putten JPM. Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. Mol Microbiol 2010; 75:1577-91; PMID:20199595; http://dx.doi.org/10.1111/j.1365-2958.2010.07079.x
  • Johannes L, Römer W. Shiga toxins–from cell biology to biomedical applications. Nat Rev Microbiol 2010; 8:105-16; PMID:20023663.
  • Mikulskis A V, Delor I, Thi VH, Cornelis GR. Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacterial host factors. Mol Microbiol 1994; 14:905-15; PMID:7715452; http://dx.doi.org/10.1111/j.1365-2958.1994.tb01326.x
  • Delor I, Cornelis GR. Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect Immun 1992; 60:4269-77; PMID:1398938.
  • Dai Z, Koehler TM. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect Immun 1997; 65:2576-82; PMID:9199422.
  • Dai Z, Sirard JC, Mock M, Koehler TM. The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 1995; 16:1171-81; PMID:8577251; http://dx.doi.org/10.1111/j.1365-2958.1995.tb02340.x
  • Sirard JC, Mock M, Fouet A. The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol 1994; 176:5188-92; PMID:8051039.
  • Fouet A. AtxA, a Bacillus anthracis global virulence regulator. Res Microbiol 2010; 161:735-42; PMID:20863885; http://dx.doi.org/10.1016/j.resmic.2010.09.006
  • Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative Sigma Factors and Their Roles in Bacterial Virulence. Microbiol Mol Biol Rev 2005; 69:527-43; PMID:16339734; http://dx.doi.org/10.1128/MMBR.69.4.527-543.2005
  • Lybecker MC, Samuels DS. Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 2007; 64:1075-89; PMID:17501929; http://dx.doi.org/10.1111/j.1365-2958.2007.05716.x
  • Archambault L, Linscott J, Swerdlow N, Boyland K, Riley E, Schlax P. Translational efficiency of rpoS mRNA from Borrelia burgdorferi: effects of the length and sequence of the mRNA leader region. Biochem Biophys Res Commun 2013; 433:73-8; PMID:23454119; http://dx.doi.org/10.1016/j.bbrc.2013.02.063
  • Hämmerle H, Večerek B, Resch A, Bläsi U. Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature. RNA Biol 2013; 10:1834-41.
  • Kraiczy P, Skerka C, Brade V, Zipfel PF. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun 2001; 69:7800-9; PMID:11705962; http://dx.doi.org/10.1128/IAI.69.12.7800-7809.2001
  • Von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, Kraiczy P, Stevenson B, Wallich R. Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 2005; 73:7398-405; PMID:16239539; http://dx.doi.org/10.1128/IAI.73.11.7398-7405.2005
  • Lillard JW, Bearden SW, Fetherston JD, Perry RD. The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 1999; 145(Pt 1):197-209; PMID:10206699; http://dx.doi.org/10.1099/13500872-145-1-197
  • Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 1996; 273:367-70; PMID:8662526; http://dx.doi.org/10.1126/science.273.5273.367
  • Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD. Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 2004; 186:1638-47; PMID:14996794; http://dx.doi.org/10.1128/JB.186.6.1638-1647.2004
  • Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90; PMID:24367764; http://dx.doi.org/10.3389/fcimb.2013.00090
  • Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781; PMID:23704938; http://dx.doi.org/10.1371/journal.pone.0063781
  • Viswanathan VK. Shigella takes the temperature. Gut Microbes 4:267-8; PMID:23851363; http://dx.doi.org/10.4161/gmic.25726
  • Xiao R, Kisaalita WS. Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 1997; 143(Pt 7):2509-15; PMID:9245831; http://dx.doi.org/10.1099/00221287-143-7-2509
  • Barbier M, Damron FH, Bielecki P, Suárez-Diez M, Puchałka J, Albertí S, Dos Santos VM, Goldberg JB. From the environment to the host: re-wiring of the transcriptome of Pseudomonas aeruginosa from 22°C to 37°C. PLoS One 2014; 9:e89941; PMID:24587139; http://dx.doi.org/10.1371/journal.pone.0089941
  • Schneider M, Exley R. Functional significance of factor H binding to Neisseria meningitidis. J Immunol 2006; 176:7566-75; PMID:16751403; http://dx.doi.org/10.4049/jimmunol.176.12.7566
  • Schneider MC, Prosser BE, Caesar JJE, Kugelberg E, Li S, Zhang Q, Quoraishi S, Lovett JE, Deane JE, Sim RB, et al. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 2009; 458:890-3; PMID:19225461; http://dx.doi.org/10.1038/nature07769
  • Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM. Temperature triggers immune evasion by Neisseria meningitidis. Nature 2013; 502:237-40; PMID:24067614; http://dx.doi.org/10.1038/nature12616
  • Reinés M, Llobet E, Llompart CM, Moranta D, Pérez-Gutiérrez C, Bengoechea J a. Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol 2012; 194:3173-88; http://dx.doi.org/10.1128/JB.00308-12
  • Li Y, Powell D. LPS remodeling is an evolved survival strategy for bacteria. PNAS 2012; 109:8716-21; PMID:22586119; http://dx.doi.org/10.1073/pnas.1202908109
  • Bengoechea JA, Zhang L, Toivanen P, Skurnik M. Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol 2002; 44:1045-62; PMID:12010497; http://dx.doi.org/10.1046/j.1365-2958.2002.02940.x
  • Bartley S, Tzeng Y, Heel K. Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule. PLoS One 2013; 8:e55798; PMID:23405216; http://dx.doi.org/10.1371/journal.pone.0055798
  • Kang SO, Wright JO, Tesorero R a, Lee H, Beall B, Cho KH. Thermoregulation of capsule production by Streptococcus pyogenes. PLoS One 2012; 7:e37367; PMID:22615992; http://dx.doi.org/10.1371/journal.pone.0037367
  • Kang SO, Caparon MG, Cho KH. Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun 2010; 78:2754-67; PMID:20385762; http://dx.doi.org/10.1128/IAI.01370-09
  • Sturm A, Heinemann M, Arnoldini M. The cost of virulence: retarded growth of Salmonella typhimurium cells expressing type III secretion system 1. PLoS Pathog 2011; 7:1-10; http://dx.doi.org/10.1371/journal.ppat.1002143
  • Rhen M, Dorman CJ. Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int J Med Microbiol 2005; 294:487-502; PMID:15790293; http://dx.doi.org/10.1016/j.ijmm.2004.11.004
  • Coombes BK, Brown NF, Valdez Y, Brumell JH, Finlay BB. Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 2004; 279:49804-15; PMID:15383528; http://dx.doi.org/10.1074/jbc.M404299200
  • Deiwick J, Nikolaus T, Erdogan S, Hensel M. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 1999; 31:1759-73; PMID:10209748; http://dx.doi.org/10.1046/j.1365-2958.1999.01312.x
  • Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BK. Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 2007; 282:34077-84; PMID:17895240; http://dx.doi.org/10.1074/jbc.M707352200
  • Beloin C, Dorman CJ. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol 2003; 47:825-38; PMID:12535079; http://dx.doi.org/10.1046/j.1365-2958.2003.03347.x
  • Watanabe H, Arakawa E, Ito K, Kato J, Nakamura A. Genetic analysis of an invasion region by use of a Tn3-lac transposon and identification of a second positive regulator gene, invE, for cell invasion of Shigella sonnei: significant homology of invE with ParB of plasmid P1. J Bacteriol 1990; 172:619-29; PMID:1688841
  • Choy HA. Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement. PLoS One 2012; 7:e41566; PMID:22911815; http://dx.doi.org/10.1371/journal.pone.0041566
  • Choy HA, Kelley MM, Croda J, Matsunaga J, Babbitt JT, Ko AI, Picardeau M, Haake DA. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS One 2011; 6:e16879; PMID:21347378; http://dx.doi.org/10.1371/journal.pone.0016879
  • Matsunaga J, Schlax PJ, Haake DA. Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive lig proteins in Leptospira interrogans. J Bacteriol 2013; 195:5092-101; PMID:24013626; http://dx.doi.org/10.1128/JB.00663-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.