3,674
Views
41
CrossRef citations to date
0
Altmetric
Review - Commissioned

Non-conventional therapeutics for oral infections

&
Pages 196-207 | Received 29 Aug 2014, Accepted 31 Oct 2014, Published online: 15 Apr 2015

References

  • Marsh PD, Martin MV. Oral Microbiology, 5th Edition. London: Churchill Livingstone 2009.
  • Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. J Ind Microbiol 1995; 15:169-75; PMID:8519474; http://dx.doi.org/10.1007/BF01569822
  • Allaker RP, Hardie JM. Oral infections. (Chapter 20). In: Topley and Wilson's Microbiology and Microbial Infections (9th Edition). Arnold, London, 1998: 3; 373-90.
  • Mantzourani M, Gilbert SC, Sulong HN, Sheehy EC, Tank S, Fenlon M, Beighton D. The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res 2009; 43:308-13; PMID:19494490; http://dx.doi.org/10.1159/000222659
  • Slots J, Bragd L, Wikstrom M, Dahlen G. The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 1986; 13:570-7; PMID:3462204; http://dx.doi.org/10.1111/j.1600-051X.1986.tb00849.x
  • Beck JD, Offenbacher S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 2005; 76:2089-100; PMID:16277581; http://dx.doi.org/10.1902/jop.2005.76.11-S.2089
  • Xiong X, Buekens P, Fraser WD, Beck J, Offenbacher S. Periodontal disease and adverse pregnancy outcomes: a systematic review. Brit J Obstet Gynaecol 2006; 113:135-43; http://dx.doi.org/10.1111/j.1471-0528.2005.00827.x
  • Rosan B, Lamont RJ. Dental plaque formation. Microbes Infect 2000; 2:1599-607; PMID:11113379; http://dx.doi.org/10.1016/S1286-4579(00)01316-2
  • Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 2003; 14:89-99; PMID:12764072; http://dx.doi.org/10.1177/154411130301400203
  • Hamada S, Ooshima T, Masuda N, Sobue S. Effect of Dextranase prepared from Spicaria violacea on dental caries in the hamster. J Dent Res 1976; 55:552; PMID:1063768; http://dx.doi.org/10.1177/00220345760550034101
  • Inoue M, Yakushiji T, Mizuno J, Yamamoto Y, Tanii S. Inhibition of dental plaque formation by mouthwash containing an endo-alpha-1, 3 glucanase. Clin Prev Dent 1990; 12:1-14.
  • Jiao YL, Wang SJ, Lv MS, Jiao BH, Li WJ, Fang YW, Liu S. Characterization of a marine-derived dextranase and its application to the prevention of dental caries. J Ind Microbiol Biotechnol 2014; 41:17-26; PMID:24197466; http://dx.doi.org/10.1007/s10295-013-1369-0
  • Hayacibara MF, Koo H, Vacca-Smith AM, Kopec LK, Scott-Anne K, Cury JA, Bowen WH. The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res 2004; 339:2127-37; PMID:15280057; http://dx.doi.org/10.1016/j.carres.2004.05.031
  • Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 1944; 79:137-58; PMID:19871359; http://dx.doi.org/10.1084/jem.79.2.137
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295(5559):1487; PMID:11859186; http://dx.doi.org/10.1126/science.295.5559.1487
  • Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 2008; 8:173-89; PMID:18842140; http://dx.doi.org/10.1186/1471-2180-8-173
  • Nijland R, Hall MJ, Burgess JG. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 2010; 5:e15668; PMID:21179489; http://dx.doi.org/10.1371/journal.pone.0015668
  • Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, Jabbouri S, Izano EA. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo) 2012; 65:73-7; PMID:22167157; http://dx.doi.org/10.1038/ja.2011.113
  • Van Leeuwen MPC, Slot DE, Van der Weijden GA. Essential oils compared to chlorhexidine with respect to plaque and parameters of gingival inflammation: a systematic review. J Periodontol 2011; 82:174-94; PMID:21043801; http://dx.doi.org/10.1902/jop.2010.100266
  • Gunsolley JC. Clinical efficacy of antimicrobial mouthrinses. J Dent 2010; 38 Suppl 1:S6-10; PMID:20621242; http://dx.doi.org/10.1016/S0300-5712(10)70004-X
  • Cottenye N, Cui ZK, Wilkinson KJ, Barbeau J, Lafleur M. Interactions between non-phospholipid liposomes containing cetylpyridinium chloride and biofilms of Streptococcus mutans: modulation of the adhesion and of the biodistribution. Biofouling 2013; 29:817-27; PMID:23826726; http://dx.doi.org/10.1080/08927014.2013.807505
  • Lee VA, Karthikeyan R, Rawls HR, Amaechi BT. Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J Dent 2010; 38:742-49; PMID:20600554; http://dx.doi.org/10.1016/j.jdent.2010.06.001
  • Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 2011; 56:437-445; PMID:21112582; http://dx.doi.org/10.1016/j.archoralbio.2010.10.022
  • Reitz A. Untersuchungen mit photodynamischen stoffen (Photobiologischen sensibilisatoren). Centr Bakteriol Parasitenek 1908; 45:270-85.
  • Meisel P, Kocher T. Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 2005; 79:159-70; PMID:15878121; http://dx.doi.org/10.1016/j.jphotobiol.2004.11.023
  • MacRobert AJ, Bown SG, Phillips D. What are the ideal photoproperties for a sensitizer? In: Bock G, Harnett S, eds. Ciba Foundation Symposium. Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use. Chichester: John Wiley 1989, 146.
  • Burda WN, Fields KB, Gill JB, Burt R, Shepherd M, Zhang XP, Shaw LN. Neutral metallated and meso-substituted porphyrins as antimicrobial agents against gram-positive pathogens. Eur J Clin Microbiol Infect Dis 2012; 31:327-35; PMID:21667268; http://dx.doi.org/10.1007/s10096-011-1314-y
  • Alves E, Costa L, Carvalho CM, Tomé JP, Faustino MA, Neves MG, Tomé AC, Cavaleiro JA, Cunha A, Almeida A. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 2009; 9:70; PMID:19368706; http://dx.doi.org/10.1186/1471-2180-9-70
  • Späth A, Leibl C, Cieplik F, Lehner K, Regensburger J, Hiller KA, Bäumler W, Schmalz G, Maisch T. Improving photodynamic inactivation of bacteria in dentistry: highly effective and fast killing of oral key pathogens with novel tooth-colored type-II photosensitizers. J Med Chem 2014; 57:5157-68; http://dx.doi.org/10.1021/jm4019492
  • Boehm TK, Ciancio SG. Diode laser activated indocyanine green selectively kills bacteria. J Int Acad Periodontol 2011; 13:58-63; PMID:21913603
  • George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. Biomed Opt 2007; 12:34029-38; http://dx.doi.org/10.1117/1.2745982
  • Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 2008; 33:231-37; PMID:18535357; http://dx.doi.org/10.1007/s12038-008-0040-9
  • Lima JP, Sampaio de Melo MA, Borges FM, Teixeira AH, Steiner-Oliveira C, Nobre Dos Santos M, Rodrigues LK, Zanin IC. Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an in situ model of dentine caries. Eur J Oralm Sci 2009; 117:568-74; http://dx.doi.org/10.1111/j.1600-0722.2009.00662.x
  • Prates RA, Yamada AM Jr, Suzuki LC, Eiko Hashimoto MC, Cai S, Gouw-Soares S, Gomes L, Ribeiro MS. Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J Photochem Photobiol B 2007; 86:70-6; PMID:16979345; http://dx.doi.org/10.1016/j.jphotobiol.2006.07.010
  • Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, Zanin IC, Rodrigues LK. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B 2012; 106:40-46; PMID:22070899; http://dx.doi.org/10.1016/j.jphotobiol.2011.10.001
  • Pileggi G, Wataha JC, Girard M, Grad I, Schrenzel J, Lange N, Bouillaguet S. Blue light-mediated inactivation of Enterococcus faecalis in vitro. Photodiagnosis Photodyn Ther 2013; 10:134-40; PMID:23769279; http://dx.doi.org/10.1016/j.pdpdt.2012.11.002
  • Vecchio D, Bhayana B, Huang L, Carrasco E, Evans CL, Hamblin MR. Structure-function relationships of Nile blue (EtNBS) derivatives as antimicrobial photosensitizers. Eur J Med Chem 2014; 75:479-91; PMID:24561676; http://dx.doi.org/10.1016/j.ejmech.2014.01.064
  • Caruso E, Banfi S, Barbieri P, Leva B, Orlandi VT. Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. J Photochem Photobiol B 2012; 114:44-51; PMID:22682365; http://dx.doi.org/10.1016/j.jphotobiol.2012.05.007
  • Orlandi VT, Caruso E, Tettamanti G, Banfi S, Barbieri P. Photoinduced antibacterial activity of two dicationic 5,15-diarylporphyrins. J Photochem Photobiol B 2013; 127:123-32; PMID:24041850; http://dx.doi.org/10.1016/j.jphotobiol.2013.08.011
  • Sun Y, Xing D, Shen L, Sun M, Fang M, Bi L, Sui Y, Zhang Z, Cao W. Bactericidal effects of hematoporphyrin monomethyl ether-mediated photosensitization against pathogenic communities from supragingival plaque. Appl Microbiol Biotechnol 2013; 97:5079-87; PMID:23615742; http://dx.doi.org/10.1007/s00253-013-4903-0
  • Moslemi N, Soleiman-Zadeh AP, Bahador A, Rouzmeh N, Chinifourus N, Paknejad M, Fekrazad R. Inactivation of Aggregatibacter actinomycetemcomitans by two different modalities of photodynamic thereapy using Toluidine blue O or radachlorin as photosensitisers: an in vitro study. Lasers Med Sci 2014 [Epub ahead of print]; PMID:24981641
  • Maisch T1, Wagner J, Papastamou V, Nerl HJ, Hiller KA, Szeimies RM, Schmalz G. Combination of 10% EDTA, Photosan, and a blue light hand-held photopolymerizer to inactivate leading oral bacteria in dentistry in vitro. J Appl Microbiol 2009; 107:1569-78; PMID:19457024; http://dx.doi.org/10.1111/j.1365-2672.2009.04342.x
  • Ehrenberg B, Malik Z, Nitzan Y. Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells. Photochem Photobiol 1985; 41:429-35; PMID:3160054; http://dx.doi.org/10.1111/j.1751-1097.1985.tb03508.x
  • Banfi S, Caruso E, Buccafurni L, Battini V, Zazzaron S, Barbieri P, Orlandi V. Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol B 2006; 85: 28-38; PMID:16737820; http://dx.doi.org/10.1016/j.jphotobiol.2006.04.003
  • Nisnevitch M, Nakonechny F, Nitzan Y. Various delivery systems for the sensitisers Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Bioorg Khim 2010; 36:396-402; PMID:20644595
  • Chen C, Chen C, Ysang J, Tsai T. Liposome-encapsulated photosensitizers against bacteria. Recent Pat Antiinfect Drug Discovery 2013; 8:100-7; http://dx.doi.org/10.2174/1574891X113089990011
  • Wilson M, Dobson J, Harvey W. Sensitization of oral bacteria to killing by low-power laser radiation. Curr Microbiol 1992; 25:77-81; PMID:1369193; http://dx.doi.org/10.1007/BF01570963
  • Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral. J Antimicrob Chemother 2006; 57:680-4; PMID:16464894; http://dx.doi.org/10.1093/jac/dkl021
  • Abels C, Fickweiler S, Weiderer P, Bäumler W, Hofstädter F, Landthaler M, Szeimies RM. Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res 2000; 292:404-11; PMID:10994775; http://dx.doi.org/10.1007/s004030000147
  • Meyer M, Speight P, Bown SG. A study of the effects of photodynamic therapy on the normal tissues of the rabbit jaw. Brit J Cancer 1991; 64:1093-7; PMID:1764372; http://dx.doi.org/10.1038/bjc.1991.470
  • Ge L, Shu R, Li Y, Luo L, Song Z, Xie Y, Liu D. Adjunctive effect of photodynamic therapy to scaling and root planing in the treatment of chronic periodontitis. Photomed Laser Surg 2011; 29:33-7; PMID:21166588; http://dx.doi.org/10.1089/pho.2009.2727
  • Berakdar M, Callaway A, Eddin MF, Ross A, Willershausen B. Comparison between scaling-root-planing (SRP) and SRP/photodynamic therapy: six-month study. Head Face Med 2012; 8:12-27; PMID:22480188; http://dx.doi.org/10.1186/1746-160X-8-12
  • Kolbe MF, Ribeiro FV, Luchesi VH, Casarin RC, Sallum EA, Nociti FH Jr., Ambrosano GMB, Cirano FR, Pimentel SP, Casati MZ. Photodynamic therapy during supportive periodontal care: clinical, microbiologic, immunoinflammatory, and patient-centered performance in a split-mouth randomized clinical trial. J Periodontol 2014; 85:277-86; http://dx.doi.org/10.1902/jop.2014.130559
  • Wu J, Xu H, Tang W, Kopelman R, Philbert MA, Xi C. Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms. Antimicrob. Agents Chemother 2009; 53:3042-8; http://dx.doi.org/10.1128/AAC.01604-08
  • Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 2009; 30:89-93; PMID:18838166; http://dx.doi.org/10.1016/j.biomaterials.2008.09.020
  • Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir 2012; 28:2091-98; PMID:22054172; http://dx.doi.org/10.1021/la203832h
  • Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM. Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother 2005; 49:1391-6; PMID:15793117; http://dx.doi.org/10.1128/AAC.49.4.1391-1396.2005
  • Cieplik F, Späth A, Leibl C, Gollmer A, Regensburger J, Tabenski L, Hiller KA, Maisch T, Scmalz G. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Invest 2013; [Epub ahead of print].
  • Kuramitsu HK. Proteases of Porphyromonas gingivalis: what don't they do? Oral Microbiol Immunol 1998; 13:263-70; PMID:9807117; http://dx.doi.org/10.1111/j.1399-302X.1998.tb00706.x
  • Grenier D, Mayrand D. Selected characteristics of pathogenic and non-pathogenic strains of Bacteroides gingivalis. J Clin Microbiol 1987; 25:738-40; PMID:3571482
  • Batten MR, Senior BW, Kilian M, Woof JM. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect Immun 2003; 71:1462-9; PMID:12595464; http://dx.doi.org/10.1128/IAI.71.3.1462-1469.2003
  • Grayson R, Douglas CWI, Heath J, Rawlinson A, Evans GS. Activation of human matrix-metalloproteinase 2 by gingival crevicular fluid and Porphyromonas gingivalis. J Clin Periodontol 2003; 30:542-550; PMID:12795793; http://dx.doi.org/10.1034/j.1600-051X.2003.00301.x
  • Andrian E, Mostefaoui Y, Rouabhia M, Grenier D. Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 2007; 211:56-62; PMID:17226791; http://dx.doi.org/10.1002/jcp.20894
  • Ingmer H, Brøndsted L. Proteases in bacterial pathogenesis. Res Microbiol 2009; 160:704-10; PMID:19778606
  • McGillivray SM, Ebrahimi CM, Fisher N, Sabet M, Zhang DX, Chen Y, Haste NM, Aroian RV, Gallo RL, Guiney DG, Friedlander AM, et al. ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis. J Innate Immun 2009; 1:494-506; PMID:20375606; http://dx.doi.org/10.1159/000225955
  • Travis J, Potempa J. Bacterial proteinases as targets for the development of second generation antibiotics. Biochem Biophys Acta 2000; 1477:35-50; PMID:10708847
  • Maeda H. Role of microbial proteases in pathogenesis. Microbiol Immunol 1996; 40:685-99; PMID:8981341; http://dx.doi.org/10.1111/j.1348-0421.1996.tb01129.x
  • Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes in periodontal disease. Infect Immun 2001; 69:1402-8; PMID:11179305; http://dx.doi.org/10.1128/IAI.69.3.1402-1408.2001
  • Giacometti COA, Ghiselli R, Orlando F, Kamysz W, D'Amato G, Mocchegiani F, Lukasiak J, Silvestri C, Saba V, Scalise G. Potential therapeutic role of histatin derivative P-113d in experimental rat models of Pseudomonas aeruginosa sepsis. J Infect Dis 2004; 190:356-64; PMID:15216473; http://dx.doi.org/10.1086/421913
  • Zhu J, Luther PW, Leng Q, Mixson AJ. Synthetic histidine-rich peptides inhibit Candida species and other fungi in vitro: role of endocytosis and treatment implications. Antimicrob Agents Chemother 2006; 50:2797-805; PMID:16870774; http://dx.doi.org/10.1128/AAC.00411-06
  • Mellgren RL. Calcium-dependent proteases: an enzyme system active at cellular membranes? Faseb J 1987; 1:110-5; PMID:2886390
  • Eichinger A, Beisel HG, Jacob U. et al, Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. Embo J 1999; 18: 5453-62; PMID:10523290; http://dx.doi.org/10.1093/emboj/18.20.5453
  • Gomez JE, Birnbaum ER, Darnall DW. The metal ion acceleration of the conversion of trypsinogen to trypsin. Lanthanide ions as calcium ion substitutes. Biochem 1974; 13:3745-50; http://dx.doi.org/10.1021/bi00715a020
  • McGillivray SM, Tran DN, Ramados NS, Alumasa JN, Okumura CY, Sakoulas G, Vaughn MM, Zhang DX, Keiler KC, Nizet V. Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host Cathelicidin antimicrobial peptides and cell envelope-active antibiotics. Antimicrob Agents Chemother 2012; 56:1854-61; PMID:22252821; http://dx.doi.org/10.1128/AAC.05131-11
  • Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:5783-96; PMID:16885446; http://dx.doi.org/10.1128/JB.00074-06
  • Capestany CA, Tribble GD, Maeda K, Demuth DR, Lamont RJ. Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 2008; 190:1436-46; PMID:18065546; http://dx.doi.org/10.1128/JB.01632-07
  • Potempa J, Pike R, Travis J. Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem 1997; 378:223-30; PMID:9165075; http://dx.doi.org/10.1515/bchm.1997.378.3-4.223
  • Marsh PD, McDermid AS, McKee AS, Baskerville A. The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology 1994; 140:861-5; PMID:8012602; http://dx.doi.org/10.1099/00221287-140-4-861
  • McKee AS, McDermid AS, Baskerville A, Dowsett AB, Ellwood DC, Marsh PD. Effect of haemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 1986; 52:349-55; PMID:3699884
  • Curtis MA, Aduse Opoku J, Rangarajan M, Gallagher A, Sterne JA, Reid CR, Evans HE, Samuelsson B. Attenuation of the virulence of Porphyromonas gingivalis by using a specific synthetic Kgp protease inhibitor. Infect Immun 2002; 70:6968-75; PMID:12438376; http://dx.doi.org/10.1128/IAI.70.12.6968-6975.2002
  • Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, Hashim A, Hoch S, Curtis MA, Nussbaum G, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 2014; 15:768-78; PMID:24922578; http://dx.doi.org/10.1016/j.chom.2014.05.012
  • Shinsuke Kataoka S, Baba A, Suda Y, Takii R, Hashimoto M, Kawakubo T, Asao T, Kadowaki T, Yamamoto K. A novel, potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy. FASEB J 2014 (Epub ahead of print, August 2014); http://dx.doi.org/10.1096/fj.14-252130
  • Meurman JH Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 2005; 113:188-96; PMID:15953242; http://dx.doi.org/10.1111/j.1600-0722.2005.00191.x
  • Nase L, Hatakka S, Savilahti E, Saxelin M, Ponka A, Poussa T, Korpela R, Meurman JH. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus CG, in milk on dental caries and caries risk children. Caries Res 2001; 35:412-20; PMID:11799281; http://dx.doi.org/10.1159/000047484
  • Busscher HJ, Mulder AF, van der Mei CH. In vitro adhesion to enamel and in vivo colonization of tooth surfaces by lactobacilli from a bio-yogurt. Caries Res 1999; 33:403-4; PMID:10460966; http://dx.doi.org/10.1159/000016541
  • Calgar E, Cilder SK, Ergeneli S, Sandalli N, Twetman S. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55739 by straws or tablets. Acta Odontol Scand 2006; 64:314-8; PMID:16945898; http://dx.doi.org/10.1080/00016350600801709
  • Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 2005; 63:317-20; PMID:16512103; http://dx.doi.org/10.1080/00016350510020070
  • Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 2006; 30:55-60; PMID:16878680
  • Zahradnik RT, Magnusson I, Walker C, McDonell E, Hillman CH, Hillman JD. Preliminary assessment of safety and effectiveness in humans of ProBiora3, a probiotic mouthwash. J Appl Microbiol 2009 107:682-90; PMID:19486429; http://dx.doi.org/10.1111/j.1365-2672.2009.04243.x
  • Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snope JL, van der Weijden CC. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 2000; 68:543-9; PMID:10639415; http://dx.doi.org/10.1128/IAI.68.2.543-549.2000
  • Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol 2009; 1:1; http://dx.doi.org/10.3402/jom.v1i0.1949
  • Coppa GV, Bruni S, Morelli L, Soldi S, Gabrielli O. The first prebiotics in humans: human milk oligosaccharides. J Clin Gastroenterol 2004; 38:S80-3; PMID:15220665; http://dx.doi.org/10.1097/01.mcg.0000128926.14285.25
  • Gorr S-U, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol 2011; 38:126-41; PMID:21323710; http://dx.doi.org/10.1111/j.1600-051X.2010.01664.x
  • Allaker, RP. Host defence peptides—a bridge between the innate and adaptive immune responses. Trans R Soc Trop Med Hyg 2008; 102:3-4; PMID:17727907; http://dx.doi.org/10.1016/j.trstmh.2007.07.005
  • Handfield M, Mans JJ, Zheng G, Lopez MC, Mao S, Progulske-Fox A, Narasimhan G, Baker HV, Lamont RJ. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell Microbiol 2005; 7:811-23; PMID:15888084; http://dx.doi.org/10.1111/j.k1462-5822.2005.00513.x
  • Wu Y, Shu R, Luo LJ, Ge LH, Xie YF. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis periodontitis patients and healthy control subjects. J Perio Res 2009; 44:636-44; http://dx.doi.org/10.1111/j.1600-0765.2008.01172.x
  • Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15:2377-92; PMID:19601838; http://dx.doi.org/10.2174/138161209788682325
  • Allaker RP, Zihni C, Kapas S. An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol Med Microbiol 1999; 23:289-93; PMID:10225288; http://dx.doi.org/10.1016/S0928-8244(98)00148-5
  • Lundy FT, O'Hare MM, McKibben BM, Fulton CR, Briggs JE, Linden GJ. Radioimmunoassay quantification of adrenomedullin in human gingival crevicular fluid. Arch Oral Biol 2006; 51:334-8; PMID:16226215; http://dx.doi.org/10.1016/j.archoralbio.2005.08.006
  • He J, Anderson MH, Shi W, Eckert R. Design and activity of a 'dual-targeted' antimicrobial peptide. Int J Antimicrob Agents 2009; 33:532-7; PMID:19188046; http://dx.doi.org/10.1016/j.ijantimicag.2008.11.013
  • He J, Yarbrough DK, Kreth J, Anderson MH, Shi W, Eckert R. Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 2010; 54:2143-51; PMID:20211885; http://dx.doi.org/10.1128/AAC.01391-09
  • Zasloff M. Antimicrobial peptides of multi-cellular organisms. Nature 2002; 415: 389-95; PMID:11807545; http://dx.doi.org/10.1038/415389a
  • Tew GN, Clements D, Tang H, Arnt L, Scott RW. Antimicrobial activity of an abiotic host defense peptide mimic. Biochim Biophys Acta 2006; 1758:1387-92; PMID:16626628; http://dx.doi.org/10.1016/j.bbamem.2006.03.001
  • Beckloff N, Laube D, Castro T, Furgang D, Park S, Perlin D, Clements D, Tang H, Scott RW, Tew GN, et al. Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob Agents Chemother 2007; 51:4125-32; PMID:17785509; http://dx.doi.org/10.1128/AAC.00208-07
  • Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiol 2003; 149:279-4; http://dx.doi.org/10.1099/mic.0.26082-0
  • Chung WO, Dommisch H, Yin L, Dale BA. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Design 2007; 13: 3073-83; http://dx.doi.org/10.2174/138161207782110435
  • Allaker RP, Ren G. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 2008; 102:1-2; PMID:17706258; http://dx.doi.org/10.1016/j.trstmh.2007.07.003
  • Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dental Res 2010; 89: 1175-86; PMID:20739694; http://dx.doi.org/10.1177/0022034510377794
  • Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008; 35:286-91; PMID:18724856; http://dx.doi.org/10.1111/j.1600-051X.2008.01274.x
  • Giersten E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38:430-35; PMID:15316186; http://dx.doi.org/10.1159/000079623
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as an antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275:177-82; PMID:15158396; http://dx.doi.org/10.1016/j.jcis.2004.02.012
  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin PG, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 2005; 17:5255-62; http://dx.doi.org/10.1021/cm0505244
  • Boldyryeva H, Umeda N, Plaskin OA, Takeda Y, Kishimoto N. High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Tech 2005; 196:373-77; http://dx.doi.org/10.1016/j.surfcoat.2004.08.159
  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18:6679-86; http://dx.doi.org/10.1021/la0202374
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008; 21:1726-32; PMID:18710264; http://dx.doi.org/10.1021/tx800064j
  • Memarzadeh K, Sharili AS, Huang J, Rawlinson SC, Allaker RP. Nanoparticulate zinc oxide as a coating material for orthopaedic and dental implants. J Bio Mat Res A in press; http://dx.doi.org/10.1002/jbm.a.35241
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73:1712-20; PMID:17261510; http://dx.doi.org/10.1128/AEM.02218-06
  • Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 2006; 27:3995-4002; PMID:16564083; http://dx.doi.org/10.1016/j.biomaterials.2006.03.003
  • Stephen KW. Dentrifices: recent clinical findings and implications for use. Int Dent J 1993; 43:549-53; PMID:8138326
  • Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 2007; 86:754-757; PMID:17652205; http://dx.doi.org/10.1177/154405910708600813
  • Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharmac 2005; 295:235-45; http://dx.doi.org/10.1016/j.ijpharm.2005.01.042
  • Venegas SC, Palacios JM, Apella MC, Morando PJ, Blesa MA. Calcium modulates interactions between bacteria and hydroxyapatite. J Dent Res 2006; 85:1124-28; PMID:17122166; http://dx.doi.org/10.1177/154405910608501211
  • Rahiotis C, Vougiouklakis G, Eliades G. Characterization of oral films formed in the presence of a CPP-ACP agent: an in situ study. J Dent 2008; 36:272-80; PMID:18291571; http://dx.doi.org/10.1016/j.jdent.2008.01.005
  • Reynolds EC, Cai F, Shen P, Walker GD. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J Dent Res 2003; 82:206-11; PMID:12598550; http://dx.doi.org/10.1177/154405910308200311
  • Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aus Dent J 2008; 53:268-73; http://dx.doi.org/10.1111/j.1834-7819.2008.00061.x
  • Nel A, Xia T, Madler I, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311:622-27; PMID:16456071; http://dx.doi.org/10.1126/science.1114397
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009; 8:543-57; http://dx.doi.org/10.1038/nmat2442
  • Seetharam RN, Sridhar KR. Nanotoxicity: threat posed by nanoparticles. Curr Sci 2006; 93:769-70.
  • Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 2009; 20:S235-S41; PMID:18716714; http://dx.doi.org/10.1007/s10856-008-3548-5