1,914
Views
25
CrossRef citations to date
0
Altmetric
Research Papers

Lactoylglutathione lyase, a critical enzyme in methylglyoxal detoxification, contributes to survival of Salmonella in the nutrient rich environment

, &
Pages 50-65 | Received 18 Sep 2014, Accepted 31 Oct 2014, Published online: 16 Mar 2015

References

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S. Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Microbiology 2014; 160(Pt9):1999-2017; PMID:24961952; http://dx.doi.org/10.1099/mic.0.078998-0
  • Ferguson GP, Totemeyer S, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 1998; 170:209-18; PMID:9732434; http://dx.doi.org/10.1007/s002030050635
  • Cooper RA. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 1984; 38:49-68; PMID:6093685; http://dx.doi.org/10.1146/annurev.mi.38.100184.000405
  • Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 1999; 110:145-75; PMID:10597025; http://dx.doi.org/10.1016/S0378-4274(99)00160-5
  • Murata-Kamiya N, Kamiya H, Kaji H, Kasai H. Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat Res 2000; 468:173-82; PMID:10882894; http://dx.doi.org/10.1016/S1383-5718(00)00044-9
  • Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug Metabol Drug Interact 2008; 23:125-50; PMID:18533367; http://dx.doi.org/10.1515/DMDI.2008.23.1-2.125
  • MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol 1998; 27:563-71; PMID:9489668; http://dx.doi.org/10.1046/j.1365-2958.1998.00701.x
  • Chauhan SC, Madhubala R. Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification. PLoS One 2009; 4:e6805; PMID:19710909; http://dx.doi.org/10.1371/journal.pone.0006805
  • Korithoski B, Levesque CM, Cvitkovitch DG. Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 2007; 189:7586-92; PMID:17720789; http://dx.doi.org/10.1128/JB.00754-07
  • Xu D, Liu X, Guo C, Zhao J. Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology 2006; 152:2013-21; PMID:16804176; http://dx.doi.org/10.1099/mic.0.28870-0
  • Baskaran S, Rajan DP, Balasubramanian KA. Formation of methylglyoxal by bacteria isolated from human faeces. J Med Microbiol 1989; 28:211-5; PMID:2926792; http://dx.doi.org/10.1099/00222615-28-3-211
  • Cooper RA. Methylglyoxal synthase. Methods Enzymol 1975; 41:502-8; PMID:236480; http://dx.doi.org/10.1016/S0076-6879(75)41106-5
  • Chakraborty S, Chaudhuri D, Balakrishnan A, Chakravortty D. Salmonella methylglyoxal detoxification by STM3117 encoded Lactoylglutathione lyase affects virulence in Coordination with SPI-2 and Phagosomal acidification. Microbiology 2014.
  • Campos-Bermudez VA, Leite NR, Krog R, Costa-Filho AJ, Soncini FC, Oliva G, Vila AJ. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity. Biochemistry 2007; 46:11069-79; PMID:17764159; http://dx.doi.org/10.1021/bi7007245
  • Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F, Andrews-Polymenis HL, McClelland M. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 2009; 5:e1000477; PMID:19578432; http://dx.doi.org/10.1371/journal.ppat.1000477
  • Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103-18; PMID:12492857; http://dx.doi.org/10.1046/j.1365-2958.2003.03313.x
  • Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS, et al. Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 2006; 281:29131-40; PMID:16893888; http://dx.doi.org/10.1074/jbc.M604640200
  • Clugston SL, Yajima R, Honek JF. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem J 2004; 377:309-16; PMID:14556652; http://dx.doi.org/10.1042/BJ20030271
  • Mao F, Dam P, Chou J, Olman V, Xu Y. DOOR: a database for prokaryotic operons. Nucleic Acids Res 2009; 37:D459-63; PMID:18988623; http://dx.doi.org/10.1093/nar/gkn757
  • Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D. The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 2008; 154:666-78; PMID:18227269; http://dx.doi.org/10.1099/mic.0.2007/011114-0
  • Merritt J, Qi F, Shi W. A unique nine-gene comY operon in Streptococcus mutans. Microbiology 2005; 151:157-66; PMID:15632435; http://dx.doi.org/10.1099/mic.0.27554-0
  • Shi L, Gunther S, Hubschmann T, Wick LY, Harms H, Muller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007; 71:592-8; PMID:17421025; http://dx.doi.org/10.1002/cyto.a.20402
  • Kang JH. Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol Lett 2003; 145:181-7; PMID:14581171; http://dx.doi.org/10.1016/S0378-4274(03)00305-9
  • Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 2000; 3:3-8; PMID:10963327
  • Chan WH, Wu HJ. Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Acta Pharmacol Sin 2006; 27:1192-8; PMID:16923340; http://dx.doi.org/10.1111/j.1745-7254.2006.00374.x
  • Murata-Kamiya N, Kamiya H. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Res 2001; 29:3433-8; PMID:11504881; http://dx.doi.org/10.1093/nar/29.16.3433
  • Rohwer F, Azam F. Detection of DNA damage in prokaryotes by terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling. Appl Environ Microbiol 2000; 66:1001-6; PMID:10698764; http://dx.doi.org/10.1128/AEM.66.3.1001-1006.2000
  • Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 2012; 336:315-9; PMID:22517853; http://dx.doi.org/10.1126/science.1219192
  • Lewin CS, Smith JT. DNA breakdown by the 4-quinolones and its significance. J Med Microbiol 1990; 31:65-70; PMID:2404125; http://dx.doi.org/10.1099/00222615-31-1-65
  • Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, et al. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest 2012; 122:2306-15; PMID:22585572; http://dx.doi.org/10.1172/JCI61319
  • Bhandary S, Chaki S, Mukherjee S, Das S, Chaudhuri K, Dastidar SG. Degradation of bacterial DNA by a natural antimicrobial agent with the help of biomimetic membrane system. Indian J Exp Biol 2012; 50:491-6; PMID:22822529
  • Ackerman RS, Cozzarelli NR, Epstein W. Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12. J Bacteriol 1974; 119:357-62; PMID:4604054
  • Smirnova G, Muzyka N, Oktyabrsky O. Transmembrane glutathione cycling in growing Escherichia coli cells. Microbiol Res 2012; 167:166-72; PMID:21689911; http://dx.doi.org/10.1016/j.micres.2011.05.005
  • Murata K, Tani K, Kato J, Chibata I. Excretion of glutathione by methylglyoxal-resistant Escherichia coli. J Gen Microbiol 1980; 120:545-7; PMID:7014775
  • Ferguson GP, McLaggan D, Booth IR. Potassium channel activation by glutathione-S-conjugates in Escherichia coli: protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 1995; 17:1025-33; PMID:8594323; http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_17061025.x
  • Sharma S, Mustafiz A, Singla-Pareek SL, Shankar Srivastava P, Sopory SK. Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice. Plant Signaling & Behavior 2012; 7:1337-45; PMID:22902706; http://dx.doi.org/10.4161/psb.21415
  • Bechara EJ, Dutra F, Cardoso VE, Sartori A, Olympio KP, Penatti CA, Adhikari A, Assunção NA. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:88-110; PMID:16920403; http://dx.doi.org/10.1016/j.cbpc.2006.07.004
  • Willetts AJ, Turner JM. Threonine metabolism in a strain of Bacillus subtilis enzymic oxidation of 1-aminopropan-2-ol and aminoacetone. Biochim Biophys Acta 1971; 252:98-104; PMID:4334917; http://dx.doi.org/10.1016/0304-4165(71)90096-1
  • Ozyamak E, Black SS, Walker CA, Maclean MJ, Bartlett W, Miller S, Booth IR. The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol Microbiol 2010; 78:1577-90; PMID:21143325; http://dx.doi.org/10.1111/j.1365-2958.2010.07426.x
  • Vander Jagt DL, Hunsaker LA. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem Biol Interact 2003; 143-144:341-51; PMID:12604221
  • Turoczy Z, Kis P, Torok K, Cserhati M, Lendvai A, Dudits D, Horváth GV. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol Biol 2011; 75:399-412; PMID:21246257; http://dx.doi.org/10.1007/s11103-011-9735-7
  • Clugston SL, Honek JF. Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms. J Mol Evol 2000; 50:491-5; PMID:10824093
  • Haneda T, Ishii Y, Danbara H, Okada N. Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett 2009; 297:241-9; PMID:19583791; http://dx.doi.org/10.1111/j.1574-6968.2009.01686.x
  • Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 2005; 151:3957-68; PMID:16339940; http://dx.doi.org/10.1099/mic.0.28126-0
  • Pujol C, Grabenstein JP, Perry RD, Bliska JB. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A 2005; 102:12909-14; PMID:16120681; 10.1073/pnas.0502849102
  • Rathman M, Sjaastad MD, Falkow S. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 1996; 64:2765-73; PMID:8698506
  • Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, et al. Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 2009; 4:e6994; PMID:19746165; http://dx.doi.org/10.1371/journal.pone.0006994
  • Willetts AJ, Turner JM. Threonine metabolism in a strain of Bacillus subtilis: enzymes acting on methylglyoxal. Biochim Biophys Acta 1970; 222:668-70; PMID:4322199; http://dx.doi.org/10.1016/0304-4165(70)90195-9
  • Kim I, Kim E, Yoo S, Shin D, Min B, Song J, Park C. Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal. J Bacteriol 2004; 186:7229-35; PMID:15489434; http://dx.doi.org/10.1128/JB.186.21.7229-7235.2004
  • Sartori A, Garay-Malpartida HM, Forni MF, Schumacher RI, Dutra F, Sogayar MC, Bechara EJ. Aminoacetone, a putative endogenous source of methylglyoxal, causes oxidative stress and death to insulin-producing RINm5f cells. Chem Res Toxicol 2008; 21:1841-50; PMID:18729331; http://dx.doi.org/10.1021/tx8001753
  • Yoon H, McDermott JE, Porwollik S, McClelland M, Heffron F. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 2009; 5:e1000306; PMID:19229334; http://dx.doi.org/10.1371/journal.ppat.1000306
  • Sukdeo N, Clugston SL, Daub E, Honek JF. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes. Biochem J 2004; 384:111-7; PMID:15270717; http://dx.doi.org/10.1042/BJ20041006
  • Stamp AL, Owen P, El Omari K, Nichols CE, Lockyer M, Lamb HK, Charles IG, Hawkins AR, Stammers DK. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Protein Sci 2010; 19:1897-905; PMID:20669241; http://dx.doi.org/10.1002/pro.475
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-1 2 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640-5; PMID:10829079; http://dx.doi.org/10.1073/pnas.120163297
  • Thein M, Sauer G, Paramasivam N, Grin I, Linke D. Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 2010; 9:6135-47; PMID:20932056; http://dx.doi.org/10.1021/pr1002438
  • Cordeiro C, Ponces Freire A. Methylglyoxal assay in cells as 2-methylquinoxaline using 1,2-diaminobenzene as derivatizing reagent. Anal Biochem 1996; 234:221-4; PMID:8714602; http://dx.doi.org/10.1006/abio.1996.0076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.