1,941
Views
26
CrossRef citations to date
0
Altmetric
Reviews

To affinity and beyond: Harnessing the T Cell receptor for cancer immunotherapy

&
Pages 3313-3321 | Received 21 May 2014, Accepted 20 Aug 2014, Published online: 31 Oct 2014

References

  • Linnemann C, Mezzadra R, Schumacher TN. TCR repertoires of intratumoral T-cell subsets. Immunol Rev 2014; 257:72-82;PMID:24329790;http://dx.doi.org/10.1111/imr.12140
  • Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol (Baltimore, Md. : 1950) 1987; 138:989-995; PMID:3100623
  • Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nature reviews. Immunology 2004; 4:123-132; PMID:15040585; http://dx.doi.org/10.1038/nri1292
  • Chlewicki LK, Holler PD, Monti BC, Clutter MR, Kranz DM. High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J Mole Biol 2005; 346:223-239; PMID:15663940; http://dx.doi.org/10.1016/j.jmb.2004.11.057
  • Reiser JB, Grégoire C, Darnault C, Mosser T, Guimezanes A, Schmitt-Verhulst AM, Fontecilla-Camps JC, Mazza G, Malissen B, Housset D. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 2002; 16:345-354; PMID:11911820
  • Hurwitz AA, Cuss SM, Stagliano KE, Zhu Z. T Cell Avidity and Tumor Immunity: Problems and Solutions. Cancer Microenviron 2013; PMID:24357332; http://dx.doi.org/10.1007/s12307-013-0143-1
  • Kalergis AM, Boucheron N, Doucey MA, Palmieri E, Goyarts EC, Vegh Z, Luescher IF, Nathenson SG. Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2001; 2:229-234; PMID:11224522; http://dx.doi.org/10.1038/85286
  • Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 2009; 126:165-176; PMID:19125887; http://dx.doi.org/10.1111/j.1365-2567.2008.03015.x
  • Rabinowitz JD, Beeson C, Wülfing C, Tate K, Allen PM, Davis MM, McConnell HM. Altered T cell receptor ligands trigger a subset of early T cell signals. Immunity 1996; 5:125-135; PMID:8769476
  • Kersh GJ, Kersh EN, Fremont DH, Allen PM. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 1998; 9:817-826; PMID:9881972
  • Tian S, Maile R, Collins EJ, Frelinger JA. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol (Baltimore, Md. : 1950) 2007; 179:2952-2960; PMID:17709510
  • Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science (New York, N.Y.) 2007; 315:1687-1691; PMID:17332376; http://dx.doi.org/10.1126/science.1139393
  • King CG, Koehli S, Hausmann B, Schmaler M, Zehn D, Palmer E. T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity 2012; 37:709-720; PMID:23084359; http://dx.doi.org/10.1016/j.immuni.2012.06.021
  • Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol 2014; 15:186-194; PMID:24317039; http://dx.doi.org/10.1038/ni.2772
  • Oh-hora M. Calcium signaling in the development and function of T-lineage cells. Immunol Rev 2009; 231:210-224; PMID:19754899; http://dx.doi.org/10.1111/j.1600-065X.2009.00819.x
  • Weber KS, Miller MJ, Allen PM. Th17 cells exhibit a distinct calcium profile from Th1 and Th2 cells and have Th1-like motility and NF-AT nuclear localization. J Immunol (Baltimore, Md. : 1950) 2008; 180:1442-1450; PMID:18209039
  • Fracchia KM, Pai CY, Walsh CM. Modulation of T Cell Metabolism and Function through Calcium Signaling. Front Immunol 2013; 4:324; PMID:24133495; http://dx.doi.org/10.3389/fimmu.2013.00324
  • Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, Weiss A, Griffiths GM. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 2014; 3:e01310; PMID:24596147; http://dx.doi.org/10.7554/eLife.01310
  • Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM. The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse. Immunity 2009; 31:621-631; PMID:19833087; http://dx.doi.org/10.1016/j.immuni.2009.08.024
  • Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 2012; 4; PMID:22661634; http://dx.doi.org/10.1101/cshperspect.a006957
  • Bautista JL, Lio CW, Lathrop SK, Forbush K, Liang Y, Luo J, Rudensky AY, Hsieh CS. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat Immunol 2009; 10:610-617; PMID:19430476; http://dx.doi.org/10.1038/ni.1739
  • Leung MW, Shen S, Lafaille JJ. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J Exp Med 2009; 206:2121-2130; PMID:19737865; http://dx.doi.org/10.1084/jem.20091033
  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993; 364:33-39; PMID:8316295; http://dx.doi.org/10.1038/364033a0
  • Scott CA, Peterson PA, Teyton L, Wilson IA. Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 1998; 8:319-329; PMID:9529149
  • Sim BC, Zerva L, Greene MI, Gascoigne NR. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science (New York, N.Y.) 1996; 273:963-966; PMID:8688082
  • Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, Gascoigne NR. T-cell-receptor affinity and thymocyte positive selection. Nature 1996; 381:616-620; PMID:8637599; http://dx.doi.org/10.1038/381616a0
  • Williams CB, Engle DL, Kersh GJ, Michael White J, Allen PM. A kinetic threshold between negative and positive selection based on the longevity of the T cell receptor-ligand complex. J Exp Med 1999; 189:1531-1544; PMID:10330432
  • Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature 1999; 402:255-262; PMID:10580495; http://dx.doi.org/10.1038/46218
  • Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001; 2:1032-1039; PMID:11600886; http://dx.doi.org/10.1038/ni723
  • Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004; 199:155-166; PMID:14734521; http://dx.doi.org/10.1084/jem.20031677
  • Laan M, Peterson P. The Many Faces of Aire in Central Tolerance. Front Immunol 2013; 4:326; PMID:24130560; http://dx.doi.org/10.3389/fimmu.2013.00326
  • Gavanescu I, Benoist C, Mathis D. B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: A therapeutic approach for APECED patients. Proc Natl Acad Sci U S A 2008; 105:13009-13014; PMID:18755889; http://dx.doi.org/10.1073/pnas.0806874105
  • Palmer E, Naeher D. Affinity threshold for thymic selection through a T-cell receptor-co-receptor zipper. Nature reviews. Immunology 2009; 9:207-213; PMID:19151748; http://dx.doi.org/10.1038/nri2469
  • McNeil LK, Starr TK, Hogquist KA. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci U S A 2005; 102:13574-13579; PMID:16174747; http://dx.doi.org/10.1073/pnas.0505110102
  • Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, Hoerter JA, Paster W, Acuto O, Cheroutre H, et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013; 504:441-445; PMID:24226767; http://dx.doi.org/10.1038/nature12718
  • Rudensky AY, Gavin M, Zheng Y. FOXP3 and NFAT: partners in tolerance. Cell 2006; 126:253-256; PMID:16873058; http://dx.doi.org/10.1016/j.cell.2006.07.005
  • Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol (Baltimore, Md. : 1950) 1999; 162:5317-5326; PMID:10228007
  • Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2:301-306; PMID:11276200; http://dx.doi.org/10.1038/86302
  • Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 2011; 208:1279-1289; PMID:21606508; http://dx.doi.org/10.1084/jem.20110308
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6:345-352; PMID:15785760; http://dx.doi.org/10.1038/ni1178
  • Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB, Beckhove P, Gounari F, Khazaie K. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 2009; 69:5490-5497; PMID:19570783; http://dx.doi.org/10.1158/0008-5472.can-09-0304
  • Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H, Chen L, Zou W. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol (Baltimore, Md. : 1950) 2006; 177:40-44; PMID:16785496
  • Ermann J, Szanya V, Ford GS, Paragas V, Fathman CG, Lejon K. CD4(+)CD25(+) T cells facilitate the induction of T cell anergy. J Immunol (Baltimore, Md. : 1950) 2001; 167:4271-4275; PMID:11591749
  • Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E. Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-beta, and various inhibitors of TCR signaling. J Immunol (Baltimore, Md. : 1950) 2007; 179:3578-3587; PMID:17785792
  • Schmidt A, Oberle N, Weiss EM, Vobis D, Frischbutter S, Baumgrass R, Falk CS, Haag M, Brügger B, Lin H, et al. Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-kappaB, and NFAT signaling in conventional T cells. Sci Signal 2011; 4:ra90; PMID:22375050; http://dx.doi.org/10.1126/scisignal.2002179
  • Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 2012; 3:51; PMID:22566933; http://dx.doi.org/10.3389/fimmu.2012.00051
  • Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006; 118:240-249; PMID:16771859; http://dx.doi.org/10.1111/j.1365-2567.2006.02362.x
  • Yan Z, Garg SK, Kipnis J, Banerjee R. Extracellular redox modulation by regulatory T cells. Nat Chem Biol 2009; 5:721-723; PMID:19718041; http://dx.doi.org/10.1038/nchembio.212
  • Yan Z, Garg SK, Banerjee R. Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 2010; 285:41525-41532; PMID:21037289; http://dx.doi.org/10.1074/jbc.M110.189944
  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3:541-547; PMID:7584144
  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, N.Y.) 2008; 322:271-275; PMID:18845758; http://dx.doi.org/10.1126/science.1160062
  • Della Vittoria Scarpati G, Fusciello C, Perri F, Sabbatino F, Ferrone S, Carlomagno C, Pepe S. Ipilimumab in the treatment of metastatic melanoma: management of adverse events. OncoTargets Ther 2014; 7:203-209; PMID:24570590; http://dx.doi.org/10.2147/ott.s57335
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature reviews. Cancer 2012; 12:252-264; PMID:22437870; http://dx.doi.org/10.1038/nrc3239
  • Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11:141-151; PMID:10485649
  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206:3015-3029; PMID:20008522; http://dx.doi.org/10.1084/jem.20090847
  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439:682-687; PMID:16382236; http://dx.doi.org/10.1038/nature04444
  • Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014; 124:2246-2259; PMID:24667641; http://dx.doi.org/10.1172/jci73639
  • Yee C. The use of endogenous T cells for adoptive transfer. Immunol Rev 2014; 257:250-263; PMID:24329802; http://dx.doi.org/10.1111/imr.12134
  • Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Liénard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC, Romero P. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 1999; 190:705-715; PMID:10477554
  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5:677-685; PMID:10371507; http://dx.doi.org/10.1038/9525
  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994; 91:6458-6462; PMID:8022805
  • Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol (Baltimore, Md. : 1950) 2004; 172:5967-5972; PMID:15128778
  • Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE, Tiercy JM, Thielemans K, Cerottini JC, Romero P. Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol (Baltimore, Md. : 1950) 2006; 177:6769-6779; PMID:17082590
  • Jotereau F, Gervois N, Labarriere N. Adoptive transfer with high-affinity TCR to treat human solid tumors: how to improve the feasibility? Targeted Oncol 2012; 7:3-14; PMID:22350487; http://dx.doi.org/10.1007/s11523-012-0207-z
  • Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM, White D, Rosenberg SA, Dudley ME, Yang JC. Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother (Hagerstown, Md. : 1997) 2010; 33:840-847; PMID:20842052; http://dx.doi.org/10.1097/CJI.0b013e3181f05b91
  • Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (New York, N.Y.) 1986; 233:1318-1321; PMID:3489291
  • Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16:6122-6131; PMID:20668005; http://dx.doi.org/10.1158/1078-0432.ccr-10-1297
  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (New York, N.Y.) 2002; 298:850-854; PMID:12242449; http://dx.doi.org/10.1126/science.1076514
  • Uchi H, Stan R, Turk MJ, Engelhorn ME, Rizzuto GA, Goldberg SM, Wolchok JD, Houghton AN. Unraveling the complex relationship between cancer immunity and autoimmunity: lessons from melanoma and vitiligo. Adv Immunol 2006; 90:215-241; PMID:16730265; http://dx.doi.org/10.1016/s0065-2776(06)90006-6
  • Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 2000; 192:1637-1644; PMID:11104805
  • Kyewski B, Klein L. A central role for central tolerance. Ann Rev Immunol 2006; 24:571-606; PMID:16551260; http://dx.doi.org/10.1146/annurev.immunol.23.021704.115601
  • Enouz S, Carrie L, Merkler D, Bevan MJ, Zehn D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J Exp Med 2012; 209:1769-1779; PMID:22987800; http://dx.doi.org/10.1084/jem.20120905
  • Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, McGary K, Huang K, Boyer J, Corse E, et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc Natl Acad Sci U S A 2013; 110:6973-6978; PMID:23576742; http://dx.doi.org/10.1073/pnas.1221609110
  • Zehn D, Lee SY, Bevan MJ. Complete but curtailed T-cell response to very low-affinity antigen. Nature 2009; 458:211-214; PMID:19182777; http://dx.doi.org/10.1038/nature07657
  • Turner MJ, Jellison ER, Lingenheld EG, Puddington L, Lefrancois L. Avidity maturation of memory CD8 T cells is limited by self-antigen expression. J Exp Med 2008; 205:1859-1868; PMID:18625745; http://dx.doi.org/10.1084/jem.20072390
  • Irving M, Zoete V, Hebeisen M, Schmid D, Baumgartner P, Guillaume P, Romero P, Speiser D, Luescher I, Rufer N, et al. Interplay between T cell receptor binding kinetics and the level of cognate peptide presented by major histocompatibility complexes governs CD8+ T cell responsiveness. J Biol Chem 2012; 287:23068-23078; PMID:22549784; http://dx.doi.org/10.1074/jbc.M112.357673
  • Dougan SK, Dougan M, Kim J, Turner JA, Ogata S, Cho HI, Jaenisch R, Celis E, Ploegh HL. Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent anti-tumor activity. Cancer Immunol Res 2013; 1:99-111; PMID:24459675; http://dx.doi.org/10.1158/2326-6066.cir-13-0047
  • Hebeisen M, Oberle SG, Presotto D, Speiser DE, Zehn D, Rufer N. Molecular insights for optimizing T cell receptor specificity against cancer. Front Immunol 2013; 4:154; PMID:23801991; http://dx.doi.org/10.3389/fimmu.2013.00154
  • Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19:620-626; PMID:21157437; http://dx.doi.org/10.1038/mt.2010.272
  • Gill S, Kalos M. T cell-based gene therapy of cancer. Transl Res 2013; 161:365-379; PMID:23246626; http://dx.doi.org/10.1016/j.trsl.2012.11.002
  • Morgan RA, Dudley ME, Yu YY, Zheng Z, Robbins PF, Theoret MR, Wunderlich JR, Hughes MS, Restifo NP, Rosenberg SA. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol (Baltimore, Md. : 1950) 2003; 171:3287-3295; PMID:12960359
  • Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, Maher CA, Panji S, Schaefer U, Kruger A, et al. Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A 2008; 105:20422-20427; PMID:19088187; http://dx.doi.org/10.1073/pnas.0810777105
  • Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195:1279-1288; PMID:12021308
  • Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363; PMID:24265631; http://dx.doi.org/10.3389/fimmu.2013.00363
  • Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother (Hagerstown, Md. : 1997) 2013; 36:133-151; PMID:23377668; http://dx.doi.org/10.1097/CJI.0b013e3182829903
  • Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122:863-871; PMID:23770775; http://dx.doi.org/10.1182/blood-2013-03-490565
  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature medicine 2013; 19:747-752; PMID:23644516; http://dx.doi.org/10.1038/nm.3161
  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science (New York, N.Y.) 2014; 344:641-645; PMID:24812403; http://dx.doi.org/10.1126/science.1251102
  • Rosenberg SA. Finding suitable targets is the major obstacle to cancer gene therapy. Cancer Gene Ther 2014; 21:45-47; PMID:24535159; http://dx.doi.org/10.1038/cgt.2014.3
  • van den Berg HA, Wooldridge L, Laugel B, Sewell AK. Coreceptor CD8-driven modulation of T cell antigen receptor specificity. J Theor Biol 2007; 249:395-408; PMID:17869274; http://dx.doi.org/10.1016/j.jtbi.2007.08.002
  • Laugel B, van den Berg HA, Gostick E, Cole DK, Wooldridge L, Boulter J, Milicic A, Price DA, Sewell AK. Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem 2007; 282:23799-23810; PMID:17540778; http://dx.doi.org/10.1074/jbc.M700976200
  • Gakamsky DM, Luescher IF, Pramanik A, Kopito RB, Lemonnier F, Vogel H, Rigler R, Pecht I. CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys J 2005; 89:2121-2133; PMID:15980174; http://dx.doi.org/10.1529/biophysj.105.061671
  • Wang A, Chandran S, Shah SA, Chiu Y, Paria BC, Aghamolla T, Alvarez-Downing MM, Lee CC, Singh S, Li T, et al. The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med 2012; 4:149ra120; PMID:22932225; http://dx.doi.org/10.1126/scitranslmed.3004306
  • Janicki CN, Jenkinson SR, Williams NA, Morgan DJ. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 2008; 68:2993-3000; PMID:18413769; http://dx.doi.org/10.1158/0008-5472.can-07-5008
  • Zhu Z, Singh V, Watkins SK, Bronte V, Shoe JL, Feigenbaum L, Hurwitz AA. High-avidity T cells are preferentially tolerized in the tumor microenvironment. Cancer Res 2013; 73:595-604; PMID:23204239; http://dx.doi.org/10.1158/0008-5472.can-12-1123
  • Shafer-Weaver KA, Anderson MJ, Stagliano K, Malyguine A, Greenberg NM, Hurwitz AA. Cutting Edge: Tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J Immunol (Baltimore, Md. : 1950) 2009; 183:4848-4852; PMID:19801511; http://dx.doi.org/10.4049/jimmunol.0900848
  • Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 2013; 19:5300-5309; PMID:24089443; http://dx.doi.org/10.1158/1078-0432.ccr-13-0143
  • Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol (Baltimore, Md. : 1950) 2004; 172:104-113; PMID:14688315

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.