1,549
Views
69
CrossRef citations to date
0
Altmetric
Review

Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury

, &
Article: e974448 | Received 06 Aug 2014, Accepted 04 Oct 2014, Published online: 25 Feb 2015

References

  • Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901; PMID:15269339; http://dx.doi.org/10.1152/physrev.00035.2003
  • Pugin J. Sepsis and the immune response. Intensive Care Med 1999; 25:1027-8; PMID:10501766; http://dx.doi.org/10.1007/s001340051003
  • Bogatcheva NV, Verin AD. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 2008; 76:202-7; PMID:18657550; http://dx.doi.org/10.1016/j.mvr.2008.06.003
  • Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001; 91:1487-500; PMID:11568129
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342:1334-49; PMID:10793167; http://dx.doi.org/10.1056/NEJM200005043421806
  • Anderson WR, Thielen K. Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct Pathol 1992; 16:615-28; PMID:1448881; http://dx.doi.org/10.3109/01913129209023751
  • Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 1982; 3:35-56; PMID:7075161
  • Matthay MA. Conference summary: acute lung injury. Chest 1999; 116:119S-26S; PMID:10424631; http://dx.doi.org/10.1378/chest.116.suppl_1.119S
  • Lewis JF, Jobe AH. Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis 1993; 147:218-33; PMID:8420422; http://dx.doi.org/10.1164/ajrccm/147.1.218
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86:279-367; PMID:16371600; http://dx.doi.org/10.1152/physrev.00012.2005
  • Stevens T. Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thor Soc 2011; 8:453-7; PMID:22052919; http://dx.doi.org/10.1513/pats.201101-004MW
  • Schnitzer JE, Siflinger-Birnboim A, Del Vecchio PJ, Malik AB. Segmental differentiation of permeability, protein glycosylation, and morphology of cultured bovine lung vascular endothelium. Biochem Biophys Res Commun 1994; 199:11-9; PMID:8123001; http://dx.doi.org/10.1006/bbrc.1994.1185
  • Blum MS, Toninelli E, Anderson JM, Balda MS, Zhou J, O'Donnell L, Pardi R, Bender JR. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Phys 1997; 273:H286-94; PMID:9249502
  • Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 2003; 100:10623-8; PMID:12963823; http://dx.doi.org/10.1073/pnas.1434429100
  • Terramani TT, Eton D, Bui PA, Wang Y, Weaver FA, Yu H. Human macrovascular endothelial cells: optimization of culture conditions. In Vitro Cell Dev Biol Anim 2000; 36:125-32; PMID:10718369; http://dx.doi.org/10.1290/1071-2690(2000)036%3c0125:HMECOO%3e2.0.CO;2
  • Saguil A, Fargo M. Acute respiratory distress syndrome: diagnosis and management. Am Fam Physician 2012; 85:352-8; PMID:22335314
  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68:673-82; PMID:1739974; http://dx.doi.org/10.1016/0092-8674(92)90143-Z
  • Sun Y, Hu G, Zhang X, Minshall RD. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res 2009; 105:676-85, 15 p following 85; PMID:19713536; http://dx.doi.org/10.1161/CIRCRESAHA.109.201673
  • Majno G, Palade GE. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961; 11:571-605; PMID:14468626; http://dx.doi.org/10.1083/jcb.11.3.571
  • Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD. Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol 2008; 294:L755-63; PMID:18245267; http://dx.doi.org/10.1152/ajplung.00350.2007
  • Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JG, Verin AD. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 2004; 67:64-77; PMID:14709404; http://dx.doi.org/10.1016/j.mvr.2003.09.007
  • Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1168-78; PMID:11350795
  • Garcia JG, Schaphorst KL, Verin AD, Vepa S, Patterson CE, Natarajan V. Diperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation. J Appl Physiol 2000; 89:2333-43; PMID:11090587
  • Bannerman DD, Goldblum SE. Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 1999; 79:1181-99; PMID:10532583
  • Bannerman DD, Sathyamoorthy M, Goldblum SE. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 1998; 273:35371-80; PMID:9857080; http://dx.doi.org/10.1074/jbc.273.52.35371
  • Gong P, Angelini DJ, Yang S, Xia G, Cross AS, Mann D, Bannerman DD, Vogel SN, Goldblum SE. TLR4 signaling is coupled to SRC family kinase activation, tyrosine phosphorylation of zonula adherens proteins, and opening of the paracellular pathway in human lung microvascular endothelia. J Biol Chem 008; 283:13437-49; PMID:18326860; http://dx.doi.org/10.1074/jbc.M707986200
  • Bannerman DD, Goldblum SE. Endotoxin induces endothelial barrier dysfunction through protein tyrosine phosphorylation. Am J Physiol 1997; 273:L217-26; PMID:9252559
  • Barabutis N, Handa V, Dimitropoulou C, Rafikov R, Snead C, Kumar S, Joshi A, Thangjam G, Fulton D, Black SM, et al. LPS induces pp60c-src-mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. Am J Physiol Lung Cell Mol Physiol 2013; 304:L883-93; PMID:23585225; http://dx.doi.org/10.1152/ajplung.00419.2012
  • Joshi AD, Dimitropoulou C, Thangjam G, Snead C, Feldman S, Barabutis N, Fulton D, Hou Y, Kumar S, Patel V, et al. Heat Shock Protein 90 Inhibitors Prevent LPS-Induced Endothelial Barrier Dysfunction by Disrupting RhoA Signaling. Am J Respir Cell Mol Biol 2014; 50:170-9; PMID:23972231
  • Zhao Y, Davis HW. Endotoxin causes phosphorylation of MARCKS in pulmonary vascular endothelial cells. J Cell Biochem 2000; 79:496-505; PMID:10972986; http://dx.doi.org/10.1002/1097-4644(20001201)79:3%3c496::AID-JCB140%3e3.0.CO;2-5
  • Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, Venema RC, Catravas JD. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 2007; 176:667-75; PMID:17615388; http://dx.doi.org/10.1164/rccm.200702-291OC
  • Grand RJ, Turnell AS, Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J 1996; 313 (Pt 2):353-68; PMID:8573065
  • Bogatcheva NV, Garcia JG, Verin AD. Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochem (Mosc) 2002; 67:75-84; PMID:11841342; http://dx.doi.org/10.1023/A:1013904231324
  • Brass LF, Molino M. Protease-activated G protein-coupled receptors on human platelets and endothelial cells. Thromb Haemost 1997; 78:234-41; PMID:9198159
  • Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64:1057-68; PMID:1672265; http://dx.doi.org/10.1016/0092-8674(91)90261-V
  • Vouret-Craviari V, Grall D, Van Obberghen-Schilling E. Modulation of Rho GTPase activity in endothelial cells by selective proteinase-activated receptor (PAR) agonists. J Thromb Haemost 2003; 1:1103-11; PMID:12871383; http://dx.doi.org/10.1046/j.1538-7836.2003.00238.x
  • Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 1995; 163:510-22; PMID:7775594; http://dx.doi.org/10.1002/jcp.1041630311
  • Garcia JG, Siflinger-Birnboim A, Bizios R, Del Vecchio PJ, Fenton JW, 2nd, Malik AB. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 1986; 128:96-104; PMID:3722274; http://dx.doi.org/10.1002/jcp.1041280115
  • Patterson CE, Lum H, Schaphorst KL, Verin AD, Garcia JG. Regulation of endothelial barrier function by the cAMP-dependent protein kinase. Endothelium 2000; 7:287-308; PMID:11201526
  • Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A 1992; 89:7919-23; PMID:1518814; http://dx.doi.org/10.1073/pnas.89.17.7919
  • Johnson A, Tahamont MV, Malik AB. Thrombin-induced lung vascular injury. Roles of fibrinogen and fibrinolysis. Am Rev Respir Dis 1983; 128:38-44; PMID:6870068
  • Johnson A, Malik AB. Pulmonary transvascular fluid and protein exchange after thrombin-induced microembolism. Differential effects of cyclooxygenase inhibitors. Am Rev Respir Dis 1985; 132:70-6; PMID:3925828
  • Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III. Am J Physiol 1996; 270:L921-30; PMID:8764216
  • Shasby DM, Shasby SS, Sullivan JM, Peach MJ. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 1982; 51:657-61; PMID:6890416; http://dx.doi.org/10.1161/01.RES.51.5.657
  • Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, Garcia JG. Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am J Physiol Lung Cell Mol Physiol 2001; 281:L565-74; PMID:11504682
  • Dery O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 1998; 274:C1429-52; PMID:9696685
  • Tinsley JH, De Lanerolle P, Wilson E, Ma W, Yuan SY. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am J Physiol Cell Physiol 2000; 279:C1285-9; PMID:11003609
  • Wysolmerski RB, Lagunoff D. Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol 1991; 261:C32-40; PMID:1858858
  • Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG. Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src). J Biol Chem 2001; 276:8567-73; PMID:11113114; http://dx.doi.org/10.1074/jbc.M005270200
  • Shi S, Verin AD, Schaphorst KL, Gilbert-McClain LI, Patterson CE, Irwin RP, Natarajan V, Garcia JG. Role of tyrosine phosphorylation in thrombin-induced endothelial cell contraction and barrier function. Endothelium 1998; 6:153-71; PMID:9930649; http://dx.doi.org/10.3109/10623329809072202
  • Ridley AJ. The GTP-binding protein Rho. The Int J Biochem Cell Biol 1997; 29:1225-9; PMID:9451818; http://dx.doi.org/10.1016/S1357-2725(97)00052-6
  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93:269-309; PMID:23303910; http://dx.doi.org/10.1152/physrev.00003.2012
  • Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2006; 290:L540-8; PMID:16257999; http://dx.doi.org/10.1152/ajplung.00259.2005
  • Knezevic N, Roy A, Timblin B, Konstantoulaki M, Sharma T, Malik AB, Mehta D. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol 2007; 27:6323-33; PMID:17636025; http://dx.doi.org/10.1128/MCB.00523-07
  • Rafikov R, Dimitropoulou C, Aggarwal S, Kangath A, Gross C, Pardo D, Sharma S, Jezierska-Drutel A, Patel V, Snead C, et al. Lipopolysaccharide Induced Lung Injury Involves the Nitration-Mediated Activation of RhoA. J Biol Chem 2014; 289:4710-22; PMID:24398689
  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996; 271:20246-9; PMID:8702756; http://dx.doi.org/10.1074/jbc.271.34.20246
  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273:245-8; PMID:8662509; http://dx.doi.org/10.1126/science.273.5272.245
  • Kolosova IA, Ma SF, Adyshev DM, Wang P, Ohba M, Natarajan V, Garcia JG, Verin AD. Role of CPI-17 in the regulation of endothelial cytoskeleton. Am J Physiol Lung Cell Mol Physiol 2004; 287:L970-80; PMID:15234908; http://dx.doi.org/10.1152/ajplung.00398.2003
  • Watanabe Y, Ito M, Kataoka Y, Wada H, Koyama M, Feng J, Shiku H, Nishikawa M. Protein kinase C-catalyzed phosphorylation of an inhibitory phosphoprotein of myosin phosphatase is involved in human platelet secretion. Blood 2001; 97:3798-805; PMID:11389019; http://dx.doi.org/10.1182/blood.V97.12.3798
  • Dubois T, Howell S, Zemlickova E, Learmonth M, Cronshaw A, Aitken A. Novel in vitro and in vivo phosphorylation sites on protein phosphatase 1 inhibitor CPI-17. Biochemical Biophys Res Commun 2003; 302:186-92; PMID:12604330; http://dx.doi.org/10.1016/S0006-291X(03)00130-X
  • Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem 1995; 118:1104-7; PMID:8720121
  • Bogatcheva NV, Verin AD, Wang P, Birukova AA, Birukov KG, Mirzopoyazova T, Adyshev DM, Chiang ET, Crow MT, Garcia JG. Phorbol esters increase MLC phosphorylation and actin remodeling in bovine lung endothelium without increased contraction. Am J Physiol Lung Cell Mol Physiol 2003; 285:L415-26; PMID:12740219
  • Moy AB, Blackwell K, Wang N, Haxhinasto K, Kasiske MK, Bodmer J, Reyes G, English A. Phorbol ester-mediated pulmonary artery endothelial barrier dysfunction through regulation of actin cytoskeletal mechanics. Am J Physiol Lung Cell Mol Physiol 2004; 287:L153-67; PMID:15003926; http://dx.doi.org/10.1152/ajplung.00292.2003
  • Stasek JE Jr., Patterson CE, Garcia JG. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J Cell Physiol 1992; 153:62-75; PMID:1522136; http://dx.doi.org/10.1002/jcp.1041530110
  • Bogatcheva NV, Birukova A, Borbiev T, Kolosova I, Liu F, Garcia JG, Verin AD. Caldesmon is a cytoskeletal target for PKC in endothelium. J Cell Biochem 2006; 99:1593-605; PMID:16823797; http://dx.doi.org/10.1002/jcb.20823
  • Sobue K, Sellers JR. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 1991; 266:12115-8; PMID:2061300
  • Marston SB, Redwood CS. The molecular anatomy of caldesmon. Biochemical J 1991; 279 (Pt 1):1-16; PMID:1930128
  • Adam LP, Haeberle JR, Hathaway DR. Phosphorylation of caldesmon in arterial smooth muscle. J Biol Chem 1989; 264:7698-703; PMID:2708386
  • Mirzapoiazova T, Kolosova IA, Romer L, Garcia JG, Verin AD. The role of caldesmon in the regulation of endothelial cytoskeleton and migration. J Cell Physiol 2005; 203:520-8; PMID:15521070; http://dx.doi.org/10.1002/jcp.20244
  • Verin AD, Liu F, Bogatcheva N, Borbiev T, Hershenson MB, Wang P, Garcia JG. Role of ras-dependent ERK activation in phorbol ester-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2000; 279:L360-70; PMID:10926560
  • Kevil CG, Oshima T, Alexander JS. The role of p38 MAP kinase in hydrogen peroxide mediated endothelial solute permeability. Endothelium 2001; 8:107-16; PMID:11572474
  • Garcia JG, Wang P, Schaphorst KL, Becker PM, Borbiev T, Liu F, Birukova A, Jacobs K, Bogatcheva N, Verin AD. Critical involvement of p38 MAP kinase in pertussis toxin-induced cytoskeletal reorganization and lung permeability. FASEB J 2002; 16:1064-76; PMID:12087068; http://dx.doi.org/10.1096/fj.01-0895com
  • Borbiev T, Birukova A, Liu F, Nurmukhambetova S, Gerthoffer WT, Garcia JG, Verin AD. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 2004; 287:L911-8; PMID:15475493; http://dx.doi.org/10.1152/ajplung.00372.2003
  • Damarla M, Hasan E, Boueiz A, Le A, Pae HH, Montouchet C, Kolb T, Simms T, Myers A, Kayyali US, et al. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. PloS One 2009; 4:e4600; PMID:19240800; http://dx.doi.org/10.1371/journal.pone.0004600
  • Gorshkov BA, Zemskova MA, Verin AD, Bogatcheva NV. Taxol alleviates 2-methoxyestradiol-induced endothelial permeability. Vascul Pharmacol 2012; 56:56-63; PMID:22074808; http://dx.doi.org/10.1016/j.vph.2011.10.002
  • Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR. Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 2004; 20:1-14; PMID:15119843; http://dx.doi.org/10.1023/B:CBTO.0000021019.50889.aa
  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110 (Pt 3):357-68; PMID: NOT_FOUND
  • Hedges JC, Yamboliev IA, Ngo M, Horowitz B, Adam LP, Gerthoffer WT. p38 mitogen-activated protein kinase expression and activation in smooth muscle. Am J Physiol 1998; 275:C527-34; PMID:9688607
  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stresstumor necrosis factor alpha by phosphorylation. J Biol Chem 1999; 274:18947-56; PMID:10383393; http://dx.doi.org/10.1074/jbc.274.27.18947
  • Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J. SAPK2p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J cell Biol 1998; 143:1361-73; PMID:9832563; http://dx.doi.org/10.1083/jcb.143.5.1361
  • Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15:2169-77; PMID:9393975; http://dx.doi.org/10.1038/sj.onc.1201380
  • Piotrowicz RS, Levin EG. Basolateral membrane-associated 27-kDa heat shock protein and microfilament polymerization. J Biol Chem 1997; 272:25920-7; PMID:9325325; http://dx.doi.org/10.1074/jbc.272.41.25920
  • Lu Q, Harrington EO, Jackson H, Morin N, Shannon C, Rounds S. Transforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol 2006; 101:375-84; PMID:16645187; http://dx.doi.org/10.1152/japplphysiol.01515.2005
  • Koss M, Pfeiffer GR, 2nd, Wang Y, Thomas ST, Yerukhimovich M, Gaarde WA, Doerschuk CM, Wang Q. Ezrinradixinmoesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. J Immunol 2006; 176:1218-27; PMID: NOT_FOUND; http://dx.doi.org/10.4049/jimmunol.176.2.1218
  • Adyshev DM, Dudek SM, Moldobaeva N, Kim KM, Ma SF, Kasa A, Garcia JG, Verin AD. Ezrinradixinmoesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am J Physiol Lung Cell and Mol Physiol 2013; 305:L240-55; PMID:23729486; http://dx.doi.org/10.1152/ajplung.00355.2012
  • Adyshev DM, Moldobaeva NK, Elangovan VR, Garcia JG, Dudek SM. Differential involvement of ezrinradixinmoesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 2011; 23:2086-96; PMID:21864676; http://dx.doi.org/10.1016/j.cellsig.2011.08.003
  • Bogatcheva NV, Zemskova MA, Gorshkov BA, Kim KM, Daglis GA, Poirier C, Verin AD. Ezrin, radixin, and moesin are phosphorylated in response to 2-methoxyestradiol and modulate endothelial hyperpermeability. Am J Respir Cell Mol Biol 2011; 45:1185-94; PMID:21659656; http://dx.doi.org/10.1165/rcmb.2011-0092OC
  • Wu T, Xing J, Birukova AA. Cell-type-specific crosstalk between p38 MAPK and Rho signaling in lung micro- and macrovascular barrier dysfunction induced by Staphylococcus aureus-derived pathogens. Transl Res 2013; 162:45-55; PMID:23571093; http://dx.doi.org/10.1016/j.trsl.2013.03.005
  • Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2007; 292:L487-99; PMID:17012370; http://dx.doi.org/10.1152/ajplung.00217.2006
  • Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur Respir J 2007; 30:429-35; PMID:17537765; http://dx.doi.org/10.1183/09031936.00154206
  • Kratzer E, Tian Y, Sarich N, Wu T, Meliton A, Leff A, Birukova AA. Oxidative Stress Contributes to Lung Injury and Barrier Dysfunction via Microtubule Destabilization. Am J Respir Cell Mol Biol 2012; 47:688-97; PMID:22842495; http://dx.doi.org/10.1165/rcmb.2012-0161OC
  • Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, Verin AD. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 2005; 204:934-47; PMID:15828024; http://dx.doi.org/10.1002/jcp.20359
  • Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, Garcia JG, Verin AD. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 2004; 18:1879-90; PMID:15576491; http://dx.doi.org/10.1096/fj.04-2328com
  • Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 2003; 28:574-81; PMID:12707013; http://dx.doi.org/10.1165/rcmb.2002-0075OC
  • Birukova AA, Birukov KG, Gorshkov B, Liu F, Garcia JG, Verin AD. MAP kinases in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung Cell Mol Physiol 2005; 289:L75-84; PMID:15778245; http://dx.doi.org/10.1152/ajplung.00447.2004
  • Alieva IB, Zemskov EA, Smurova KM, Kaverina IN, Verin AD. The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization. J Cell Biochem 2013; 114:2258-72; PMID:23606375; http://dx.doi.org/10.1002/jcb.24575
  • Luduena RF, Fellous A, McManus L, Jordan MA, Nunez J. Contrasting roles of tau and microtubule-associated protein 2 in the vinblastine-induced aggregation of brain tubulin. J Biol Chem 1984; 259:12890-8; PMID:6436239
  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 1992; 3:1141-54; PMID:1421571; http://dx.doi.org/10.1091/mbc.3.10.1141
  • Gupta RP, Abou-Donia MB. Tau phosphorylation by diisopropyl phosphorofluoridate (DFP)-treated hen brain supernatant inhibits its binding with microtubules: role of Ca2+Calmodulin-dependent protein kinase II in tau phosphorylation. Arch Biochem Biophys 1999; 365:268-78; PMID:10328822; http://dx.doi.org/10.1006/abbi.1999.1165
  • Litersky JM, Johnson GV, Jakes R, Goedert M, Lee M, Seubert P. Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calciumcalmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. The Biochemical J 1996; 316 (Pt 2):655-60; PMID:8687413
  • Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH. Reactivating kinasep38 phosphorylates tau protein in vitro. J Neurochem 1997; 69:191-8; PMID:9202310; http://dx.doi.org/10.1046/j.1471-4159.1997.69010191.x
  • Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2007; 292:L487-99; PMID:17012370; http://dx.doi.org/10.1152/ajplung.00217.2006
  • Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall R, Neamu R, Voyno-Yasenetskaya T. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 2005; 280:26533-42; PMID:15897190; http://dx.doi.org/10.1074/jbc.M502921200
  • Tian X, Tian Y, Sarich N, Wu T, Birukova AA. Novel role of stathmin in microtubule-dependent control of endothelial permeability. FASEB J 2012; 26:3862-74; PMID:22700873; http://dx.doi.org/10.1096/fj.12-207746
  • Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 1998; 273:34954-60; PMID:9857026; http://dx.doi.org/10.1074/jbc.273.52.34954
  • Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nature Cell Biol 2002; 4:294-301; PMID:11912491; http://dx.doi.org/10.1038/ncb773
  • Ishikawa R, Kagami O, Hayashi C, Kohama K. The binding of nonmuscle caldesmon from brain to microtubules. Regulations by Ca(2+)-calmodulin and cdc2 kinase. FEBS Lett 1992; 299:54-6; PMID:1544474; http://dx.doi.org/10.1016/0014-5793(92)80099-3
  • Ishikawa R, Kagami O, Hayashi C, Kohama K. Characterization of smooth muscle caldesmon as a microtubule-associated protein. Cell Motil Cytoskeleton 1992; 23:244-51; PMID:1477888; http://dx.doi.org/10.1002/cm.970230404
  • Elbaum M, Chausovsky A, Levy ET, Shtutman M, Bershadsky AD. Microtubule involvement in regulating cell contractility and adhesion-dependent signalling: a possible mechanism for polarization of cell motility. Biochemical Soc Symp 1999; 65:147-72; PMID:10320938
  • Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209-21; PMID:19217423; http://dx.doi.org/10.1016/j.devcel.2009.01.004
  • Huber AH, Weis WI. The structure of the beta-cateninE-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 2001; 105:391-402; PMID:11348595; http://dx.doi.org/10.1016/S0092-8674(01)00330-0
  • Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 2000; 279:L419-22; PMID:10956614
  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 1999; 96:9815-20; PMID:10449777; http://dx.doi.org/10.1073/pnas.96.17.9815
  • Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J 2012; 31:2714-36; PMID:22617422; http://dx.doi.org/10.1038/emboj.2012.150
  • Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003; 94:225-9; PMID:12824913; http://dx.doi.org/10.1111/j.1349-7006.2003.tb01424.x
  • Ferreira Tojais N, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplaa C, Dufourcq P. Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovasc Res 2014; 103:291-303; PMID:24866384; http://dx.doi.org/10.1093/cvr/cvu133
  • Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 1994; 107 (Pt 12):3655-63; PMID:7706414
  • Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 2004; 5:261-70; PMID:15071551; http://dx.doi.org/10.1038/nrm1357
  • Weis WI, Nelson WJ. Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 2006; 281:35593-7; PMID:17005550; http://dx.doi.org/10.1074/jbc.R600027200
  • Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 2008; 1778:794-809; PMID:17961505; http://dx.doi.org/10.1016/j.bbamem.2007.09.003
  • Beckers CM, Garcia-Vallejo JJ, van Hinsbergh VW, van Nieuw Amerongen GP. Nuclear targeting of beta-catenin and p120ctn during thrombin-induced endothelial barrier dysfunction. Cardiovasc Res 2008; 79:679-88; PMID:18490349; http://dx.doi.org/10.1093/cvr/cvn127
  • Zebda N, Tian Y, Tian X, Gawlak G, Higginbotham K, Reynolds AB, Birukova AA, Birukov KG. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J Biol Chem 2013; 288:18290-9; PMID:23653363; http://dx.doi.org/10.1074/jbc.M112.432757
  • Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121:2115-22; PMID:18565824; http://dx.doi.org/10.1242/jcs.017897
  • Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylationdephosphorylation of beta-catenin. Curr Opin Cell Biol 2005; 17:459-65; PMID:16099633; http://dx.doi.org/10.1016/j.ceb.2005.08.009
  • Gong H, Gao X, Feng S, Siddiqui MR, Garcia A, Bonini MG, Komarova Y, Vogel SM, Mehta D, Malik AB. Evidence of a common mechanism of disassembly of adherens junctions through Galpha13 targeting of VE-cadherin. J Exp Med 2014; 211:579-91; PMID:24590762; http://dx.doi.org/10.1084/jem.20131190
  • Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, Malik AB. PKCalpha activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 2012; 111:739-49; PMID:22798526; http://dx.doi.org/10.1161/CIRCRESAHA.112.269654
  • Choi HJ, Huber AH, Weis WI. Thermodynamics of beta-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J Biol Chem 2006; 281:1027-38; PMID:16293619; http://dx.doi.org/10.1074/jbc.M511338200
  • Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. Crystal structure of a beta-cateninBCL9Tcf4 complex. Mol Cell 2006; 24:293-300; PMID:17052462; http://dx.doi.org/10.1016/j.molcel.2006.09.001
  • Dupre-Crochet S, Figueroa A, Hogan C, Ferber EC, Bialucha CU, Adams J, Richardson EC, Fujita Y. Casein kinase 1 is a novel negative regulator of E-cadherin-based cell-cell contacts. Mol Cell Biol 2007; 27:3804-16; PMID:17353278; http://dx.doi.org/10.1128/MCB.01590-06
  • Serres M, Filhol O, Lickert H, Grangeasse C, Chambaz EM, Stappert J, Vincent C, Schmitt D. The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res 2000; 257:255-64; PMID:10837139; http://dx.doi.org/10.1006/excr.2000.4895
  • Serres M, Grangeasse C, Haftek M, Durocher Y, Duclos B, Schmitt D. Hyperphosphorylation of beta-catenin on serine-threonine residues and loss of cell-cell contacts induced by calyculin A and okadaic acid in human epidermal cells. Exp Cell Res 1997; 231:163-72; PMID:9056423; http://dx.doi.org/10.1006/excr.1996.3443
  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996; 272:1023-6; PMID:8638126; http://dx.doi.org/10.1126/science.272.5264.1023
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16:3797-804; PMID:9233789; http://dx.doi.org/10.1093/emboj/16.13.3797
  • Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 2007; 282:11221-9; PMID:17287208; http://dx.doi.org/10.1074/jbc.M611871200
  • Taurin S, Sandbo N, Yau DM, Sethakorn N, Dulin NO. Phosphorylation of beta-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2008; 294:C1169-74; PMID:18353896; http://dx.doi.org/10.1152/ajpcell.00096.2008
  • Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901; PMID:15269339; http://dx.doi.org/10.1152/physrev.00035.2003
  • Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 2004; 36:1206-37; PMID:15109567; http://dx.doi.org/10.1016/j.biocel.2003.08.007
  • Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 2005; 24:1146-56; PMID:15775979; http://dx.doi.org/10.1038/sj.emboj.7600605
  • Gross CM, Aggarwal S, Kumar S, Tian J, Kasa A, Bogatcheva N, Datar SA, Verin AD, Fineman JR, Black SM. Sox18 preserves the pulmonary endothelial barrier under conditions of increased shear stress. J Cell Physiol 2014; 229:1802-16; PMID:24677020; http://dx.doi.org/10.1002/jcp.24633
  • Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JG, Jacobson JR. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Resp Cell Mol Biol 2014; 50:328-36; PMID:24028293
  • Gillrie MR, Krishnegowda G, Lee K, Buret AG, Robbins SM, Looareesuwan S, Gowda DC, Ho M. Src-family kinase dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood 2007; 110:3426-35; PMID:17693580; http://dx.doi.org/10.1182/blood-2007-04-084582
  • Yin Q, Nan H, Yan L, Huang X, Wang W, Cui G, Wei J. Alteration of tight junctions in pulmonary microvascular endothelial cells in bleomycin-treated rats. Exp Toxicol Pathol 2012; 64:81-91; PMID:20663652; http://dx.doi.org/10.1016/j.etp.2010.06.010
  • Chattopadhyay R, Dyukova E, Singh NK, Ohba M, Mobley JA, Rao GN. Vascular endothelial tight junctions and barrier function are disrupted by 15(S)-hydroxyeicosatetraenoic acid partly via protein kinase C epsilon-mediated zona occludens-1 phosphorylation at threonine 770772. J Biol Chem 2014; 289:3148-63; PMID:24338688; http://dx.doi.org/10.1074/jbc.M113.528190
  • Collins NT, Cummins PM, Colgan OC, Ferguson G, Birney YA, Murphy RP, Meade G, Cahill PA. Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler Thromb Vasc Biol 2006; 26:62-8; PMID:16269664; http://dx.doi.org/10.1161/01.ATV.0000194097.92824.b3
  • Kundumani-Sridharan V, Dyukova E, Hansen DE 3rd, Rao GN. 1215-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. J Biol Chem 2013; 288:15830-42; PMID:23589307; http://dx.doi.org/10.1074/jbc.M113.453290
  • O'Donnell JJ 3rd, Birukova AA, Beyer EC, Birukov KG. Gap junction protein connexin43 exacerbates lung vascular permeability. PloS One 2014; 9:e100931; PMID:24967639; http://dx.doi.org/10.1371/journal.pone.0100931
  • Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J. Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 2006; 116:2193-200; PMID:16878174; http://dx.doi.org/10.1172/JCI26605
  • Baker SM, Kim N, Gumpert AM, Segretain D, Falk MM. Acute internalization of gap junctions in vascular endothelial cells in response to inflammatory mediator-induced G-protein coupled receptor activation. FEBS Lett 2008; 582:4039-46; PMID:18992245; http://dx.doi.org/10.1016/j.febslet.2008.10.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.