1,351
Views
10
CrossRef citations to date
0
Altmetric
Review

The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants

Article: e959378 | Received 15 Apr 2014, Accepted 17 Jun 2014, Published online: 30 Oct 2014

References

  • Preiss TW, Hentze M. Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 2003; 25:1201-11; PMID:14635255; http://dx.doi.org/10.1002/bies.10362
  • Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu Rev Biochem 2004; 73:657-704; PMID:15189156; http://dx.doi.org/10.1146/annurev.biochem.73.030403.080419
  • Pestova TV, Lorsch JR, Hellen CUT. The mechanism of translation initiation in eukaryotes. In: Mathews MB, Sonenberg N, Hershey JWB ed. Translational Control in Biology and Medicine. Cold Spring Harbor Laboratory Press. 2007:87-128.
  • Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, Sonenberg N. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol 2011; 12:235-45; PMID:21427765; http://dx.doi.org/10.1038/nrm3083
  • Korneeva NL, First EA, Benoit CA, Rhoads RE. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J Biol Chem 2005; 280:1872-81; PMID:15528191; http://dx.doi.org/10.1074/jbc.M406168200
  • Rogers GW Jr., Komar AA, Merrick WC. eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 2002; 72:307-31; PMID:12206455; http://dx.doi.org/10.1016/S0079-6603(02)72073-4
  • Goyer C, Altmann M, Lee HS, Blanc A, Deshmukh M, Woolford JL Jr., Trachsel H, Sonenberg N. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol Cell Biol 1993; 13:4860-74; PMID:8336723
  • Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N. A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 1998; 18:334-42; PMID:9418880
  • Gallie DR, Browning KS. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem 2001; 276:36951-60; PMID:11483601; http://dx.doi.org/10.1074/jbc.M103869200
  • Bellsolell L, Cho-Park PF, Poulin F, Sonenberg N, Burley SK. Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1. Structure 2006; 14:913-23; PMID:16698552; http://dx.doi.org/10.1016/j.str.2006.03.012
  • Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol Cell 2001; 7:193-203; PMID:11172724; http://dx.doi.org/10.1016/S1097-2765(01)00167-8
  • Cheng S, Gallie DR. Competitive and noncompetitive binding of eIF4B, eIF4A, and the poly(A) binding protein to wheat translation initiation factor eIFiso4G. Biochemistry 2010; 49:8251-65; PMID:20795652; http://dx.doi.org/10.1021/bi1008529
  • Cheng S, Gallie DR. Eukaryotic initiation factor 4B and the poly(A)-binding protein bind eIF4G competitively. Translation 2013; 1:1-13; http://dx.doi.org/10.4161/trla.24038
  • Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M, Suzuki C, Herdy B, Sonenberg N, Wagner G. Topology and regulation of the human eIF4A4G4H helicase complex in translation initiation. Cell 2009; 136:447-60; PMID:19203580; http://dx.doi.org/10.1016/j.cell.2009.01.014
  • Lamphear BJ, Kirchweger R, Skern T, Rhoads RE. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 1995; 270:21975-83; PMID:7665619; http://dx.doi.org/10.1074/jbc.270.37.21975
  • Imataka H, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 1997; 17:6940-7; PMID:9372926
  • Imataka H, Gradi A, Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 1998; 17:7480-9; PMID:9857202; http://dx.doi.org/10.1093/emboj17.24.7480
  • Marintchev A, Wagner G. Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 2004; 37:197-284; PMID:16194295; http://dx.doi.org/10.1017/S0033583505004026
  • Schütz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H, Altmann M, Baumann U. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc Natl Acad Sci USA 2008; 105:9564-9; PMID:18606994; http://dx.doi.org/10.1073/pnas.0800418105
  • Rajagopal V, Park EH, Hinnebusch AG, Lorsch JR. Specific domains in yeast translation initiation factor eIF4G strongly bias RNA unwinding activity of the eIF4F complex toward duplexes with 5¢-overhangs. J Biol Chem 2012; 287:20301-12; PMID:22467875; http://dx.doi.org/10.1074/jbc.M112.347278
  • Oberer M, Marintchev A, Wagner G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 2005; 19:2212-23; PMID:16166382; http://dx.doi.org/10.1101/gad.1335305
  • Hilbert M, Kebbel F, Gubaev A, Klostermeier D. eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res 2011; 39:2260-70; PMID:21062831; http://dx.doi.org/10.1093/nargkq1127
  • Feoktistova K, Tuvshintogs E, Do A, Fraser CS. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc Natl Acad Sci U S A 2013; 110:13339-44; PMID:23901100; http://dx.doi.org/10.1073/pnas.1303781110
  • Park EH, Walker SE, Zhou F, Lee JM, Rajagopal V, Lorsch JR, Hinnebusch AG. Yeast eukaryotic initiation factor 4B (eIF4B) enhances complex assembly between eIF4A and eIF4G in vivo. J Biol Chem 2013; 288:2340-54; PMID:23184954; http://dx.doi.org/10.1074/jbc.M112.398537
  • Lomakin IB, Hellen CU, Pestova TV. Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol 2000; 20:6019-29; PMID:10913184; http://dx.doi.org/10.1128/MCB.20.16.6019-6029.2000
  • Nielsen KH, Behrens MA, He Y, Oliveira CL, Jensen LS, Hoffmann SV, Pedersen JS, Andersen GR. Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Res 2011; 39:2678-89; PMID:21113024; http://dx.doi.org/10.1093/nargkq1206
  • LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JW, Rhoads RE. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 2006; 281:22917-32; PMID:16766523; http://dx.doi.org/10.1074/jbc.M605418200
  • Villa N, Do A, Hershey JW, Fraser CS. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem 2013; 288:32932-40; PMID:24092755; http://dx.doi.org/10.1074/jbc.M113.517011
  • Korneeva NL, Lamphear BJ, Hennigan FL, Rhoads RE. Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J Biol Chem 2000; 275:41369-76; PMID:11022043; http://dx.doi.org/10.1074/jbc.M007525200
  • He H, von der Haar T, Singh CR, Ii M, Li B, Hinnebusch AG, McCarthy JE, Asano K. The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 2003; 23:5431-45; PMID:12861028; http://dx.doi.org/10.1128/MCB.23.15.5431-5445.2003
  • Singh CR, Watanabe R, Chowdhury W, Hiraishi H, Murai MJ, Yamamoto Y, Miles D, Ikeda Y, Asano M, Asano K. Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol Cell Biol 2012; 32:3978-89; PMID:22851688; http://dx.doi.org/10.1128/MCB.00376-12
  • Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci USA 2005; 102:16164-9; PMID:16254050; http://dx.doi.org/10.1073/pnas.0507960102
  • Tarun SZ Jr., Sachs AB. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 1996; 15:7168-77; PMID:9003792
  • Le H, Tanguay RL, Balasta ML, Wei C-C, Browning KS, Metz AM, Goss DJ, Gallie DR. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. J Biol Chem 1997b; 272:16247-55; PMID:9195926; http://dx.doi.org/10.1074/jbc.272.26.16247
  • Piron M, Vende P, Cohen J, Poncet D. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 1998; 17:5811-21; PMID:9755181; http://dx.doi.org/10.1093/emboj17.19.5811
  • Fraser CS, Pain VM, Morley SJ. The association of initiation factor 4F with poly(A)-binding protein is enhanced in serum-stimulated Xenopus kidney cells. J Biol Chem 1999; 274:196-204; PMID:9867830; http://dx.doi.org/10.1074/jbc.274.1.196
  • Park EH, Walker SE, Lee JM, Rothenburg S, Lorsch JR, Hinnebusch AG. Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1•PABP mRNPs in vivo. EMBO J 2011; 30:302-16; PMID:21139564; http://dx.doi.org/10.1038/emboj.2010.312
  • Wei C-C, Balasta ML, Ren J, Goss DJ. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochemistry 1998; 37:1910-6; PMID:9485317; http://dx.doi.org/10.1021/bi9724570
  • Andreou AZ, Klostermeier D. eIF4B and eIF4G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle. J Mol Biol 2014; 426:51-61; PMID:24080224; http://dx.doi.org/10.1016/j.jmb.2013.09.027
  • Lax S, Fritz W, Browning K, Ravel J. Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5¢-triphosphate inhibition of polypeptide synthesis. Proc Natl Acad Sci U S A 1985; 82:330-3; PMID:3855554; http://dx.doi.org/10.1073/pnas.82.2.330
  • Lax SR, Browning KS, Maia DM, Ravel JM. ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J Biol Chem 1986; 261:15632-6; PMID:2946676
  • Browning KS, Lax SR, Ravel JM. Identification of two messenger RNA cap binding proteins in wheat germ. Evidence that the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F are antigenically distinct polypeptides. J Biol Chem 1987; 262:11228-32; PMID:2440886
  • Browning KS, Fletcher L, Lax SR, Ravel JM. Evidence that the 59-kDa protein synthesis initiation factor from wheat germ is functionally similar to the 80-kDa initiation factor 4B from mammalian cells. J Biol Chem 1989; 264:8491-4; PMID:2722784
  • Rogers GW Jr., Richter NJ, Merrick WC. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 1999; 274:12236-44; PMID:10212190; http://dx.doi.org/10.1074/jbc.274.18.12236
  • Rogers GW Jr., Richter NJ, Lima WF, Merrick WC. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 2001; 276:30914-22; PMID:11418588; http://dx.doi.org/10.1074/jbc.M100157200
  • Özeş AR, Feoktistova K, Avanzino BC, Fraser CS. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J Mol Biol 2011; 412:674-87; PMID:21840318; http://dx.doi.org/10.1016/j.jmb.2011.08.004
  • Trachsel H, Erni B, Schreier MH, Staehelin T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J Mol Biol 1977; 116:755-67; PMID:592399; http://dx.doi.org/10.1016/0022-2836(77)90269-8
  • Benne R, Hershey JW. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 1978; 253:3078-87; PMID:641056
  • Methot N, Pickett G, Keene JD, Sonenberg N. In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 1996a; 2:38-50; PMID:8846295
  • Altmann M, Wittmer B, Méthot N, Sonenberg N, Trachsel H. The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J 1995; 14:3820-7; PMID:7543843
  • Pestova TV, Hellen CU, Shatsky IN. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43 S preinitiation complexes. Mol Cell Biol 1996; 16:6859-69; PMID:8943341
  • Morino S, Imataka H, Svitkin YV, Pestova TV, Sonenberg N. Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol Cell Biol 2000; 20:468-77; PMID:10611225; http://dx.doi.org/10.1128/MCB.20.2.468-477.2000
  • Méthot N, Song MS, Sonenberg N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 1996b; 16:5328-34; PMID:8816444
  • Altmann M, Müller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H. A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J 1993; 12:3997-4003; PMID:8404865
  • Dmitriev SE, Terenin IM, Dunaevsky YE, Merrick WC, Shatsky IN. Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5¢ untranslated regions. Mol Cell Biol 2003; 23:8925-33; PMID:14645505; http://dx.doi.org/10.1128/MCB.23.24.8925-8933.2003
  • Metz AM, Wong KC, Malmström SA, Browning KS. Eukaryotic initiation factor 4B from wheat and Arabidopsis thaliana is a member of a multigene family. Biochem Biophys Res Commun 1999; 266:314-21; PMID:10600500; http://dx.doi.org/10.1006/bbrc.1999.1814
  • Cheng S, Gallie DR. Wheat eukaryotic initiation factor 4B organizes assembly of RNA and eIFiso4G, eIF4A, and poly(A)-binding protein. J Biol Chem 2006; 281:24351-64; PMID:16803875; http://dx.doi.org/10.1074/jbc.M605404200
  • Rozovsky N, Butterworth AC, Moore MJ. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 2008; 14:2136-48; PMID:18719248; http://dx.doi.org/10.1261/rna.1049608
  • Zhou F, Walker SE, Mitchell SF, Lorsch JR, Hinnebusch AG. Identification and characterization of functionally critical, conserved motifs in the internal repeats and N-terminal domain of yeast translation initiation factor 4B (yeIF4B). J Biol Chem 2014; 289:1704-22; PMID:24285537; http://dx.doi.org/10.1074/jbc.M113.529370
  • Bushell M, Wood W, Carpenter G, Pain VM, Morley SJ, Clemens MJ. Disruption of the interaction of mammalian protein synthesis eukaryotic initiation factor 4B with the poly(A)-binding protein by caspase- and viral protease-mediated cleavages. J Biol Chem 2001; 276:23922-8; PMID:11274152; http://dx.doi.org/10.1074/jbc.M100384200
  • Lanker S, Müller PP, Altmann M, Goyer C, Sonenberg N, Trachsel H. Interactions of the eIF-4F subunits in the yeast Saccharomyces cerevisiae. J Biol Chem 1992; 267:21167-71; PMID:1400427
  • Neff CL, Sachs AB. Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol Cell Biol 1999; 19:5557-64; PMID:10409745
  • Browning KS. The plant translational apparatus. Plant Mol Biol 1996; 32:107-44; PMID:8980477; http://dx.doi.org/10.1007/BF00039380
  • Sachs AB, Davis RW, Kornberg RD. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 1987; 7:3268-76; PMID:3313012
  • Kühn U, Pieler T. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J Mol Biol 1996; 256:20-30; PMID:8609610; http://dx.doi.org/10.1006/jmbi.1996.0065
  • Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999; 98:835-45; PMID:10499800; http://dx.doi.org/10.1016/S0092-8674(00)81517-2
  • Baer BW, Kornberg RD. Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Proc Natl Acad Sci U S A 1980; 77:1890-2; PMID:6929525; http://dx.doi.org/10.1073/pnas.77.4.1890
  • Kessler SH, Sachs AB. RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol Cell Biol 1998; 18:51-7; PMID:9418852
  • Otero LJ, Ashe MP, Sachs AB. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J 1999; 18:3153-63; PMID:10357826; http://dx.doi.org/10.1093/emboj18.11.3153
  • Cheng S, Gallie DR. eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. J Biol Chem 2007; 282:25247-58; PMID:17606619; http://dx.doi.org/10.1074/jbc.M702193200
  • Khaleghpour K, Svitkin YV, Craig AW, DeMaria CT, Deo RC, Burley SK, Sonenberg N. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol Cell 2001; 7:205-16; PMID:11172725; http://dx.doi.org/10.1016/S1097-2765(01)00168-X
  • Roy G, De Crescenzo G, Khaleghpour K, Kahvejian A, O’Connor-McCourt M, Sonenberg N. Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol Cell Biol 2002; 22:3769-82; PMID:11997512; http://dx.doi.org/10.1128/MCB.22.11.3769-3782.2002
  • Uchida N, Hoshino S, Imataka H, Sonenberg N, Katada T. A novel role of the mammalian GSPTeRF3 associating with poly(A)-binding protein in CapPoly(A)-dependent translation. J Biol Chem 2002; 277:50286-92; PMID:12381739; http://dx.doi.org/10.1074/jbc.M203029200
  • Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 2003; 278:38287-91; PMID:12923185; http://dx.doi.org/10.1074/jbc.C300300200
  • Albrecht M, Lengauer T. Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 2004; 316:129-38; PMID:15003521; http://dx.doi.org/10.1016/j.bbrc.2004.02.024
  • Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5:2108-16; PMID:1682219; http://dx.doi.org/10.1101/gad.5.11.2108
  • Michel YM, Poncet D, Piron M, Kean KM, Borman AM. Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J Biol Chem 2000; 275:32268-76; PMID:10922367; http://dx.doi.org/10.1074/jbc.M004304200
  • Bi X, Ren J, Goss DJ. Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochemistry 2000; 39:5758-65; PMID:10801326; http://dx.doi.org/10.1021/bi992322p
  • von Der Haar T, Ball PD, McCarthy JE. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5¢-Cap by domains of eIF4G. J Biol Chem 2000; 275:30551-5; PMID:10887196; http://dx.doi.org/10.1074/jbc.M004565200
  • Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19:104-13; PMID:15630022; http://dx.doi.org/10.1101/gad.1262905
  • Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM. Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 2007; 282:1695-708; PMID:17130132; http://dx.doi.org/10.1074/jbc.M602780200
  • Luo Y, Goss DJ. Homeostasis in mRNA initiation: wheat germ poly(A)-binding protein lowers the activation energy barrier to initiation complex formation. J Biol Chem 2001; 276:43083-6; PMID:11571283; http://dx.doi.org/10.1074/jbc.M104970200
  • Khan MA, Goss DJ. Translation initiation factor (eIF) 4B affects the rates of binding of the mRNA m7G cap analogue to wheat germ eIFiso4F and eIFiso4F.PABP. Biochemistry 2005; 44:4510-6; PMID:15766281; http://dx.doi.org/10.1021/bi047298g
  • Amrani N, Ghosh S, Mangus DA, Jacobson A. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 2008; 453:1276-80; PMID:18496529; http://dx.doi.org/10.1038/nature06974
  • Svitkin YV, Evdokimova VM, Brasey A, Pestova TV, Fantus D, Yanagiya A, Imataka H, Skabkin MA, Ovchinnikov LP, Merrick WC, et al. General RNA-binding proteins have a function in poly(A)-binding protein-dependent translation. EMBO J 2009; 28:58-68; PMID:19078965; http://dx.doi.org/10.1038/emboj.2008.259
  • Le H, Browning KS, Gallie DR. The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, and eIF4B. J Biol Chem 2000; 275:17452-62; PMID:10747998; http://dx.doi.org/10.1074/jbc.M001186200
  • Wells SE, Hillner PE, Vale RD, Sachs AB. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 1998; 2:135-40; PMID:9702200; http://dx.doi.org/10.1016/S1097-2765(00)80122-7
  • Gallie DR. The role of the initiation surveillance complex in promoting efficient protein synthesis. Biochem Soc Trans 2004; 32:585-8; PMID:15270682; http://dx.doi.org/10.1042/BST0320585
  • Iizuka N, Najita L, Franzusoff A, Sarnow P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:7322-30; PMID:7935446
  • Tarun SZ Jr., Sachs AB. A common function for mRNA 5¢ and 3¢ ends in translation initiation in yeast. Genes Dev 1995; 9:2997-3007; PMID:7498795; http://dx.doi.org/10.1101/gad.9.23.2997
  • Cheng S, Sultana S, Goss DJ, Gallie DR. Translation initiation factor 4B homodimerization, RNA binding, and interaction with Poly(A)-binding protein are enhanced by zinc. J Biol Chem 2008; 283:36140-53; PMID:18977752; http://dx.doi.org/10.1074/jbc.M807716200
  • Drawbridge J, Grainger JL, Winkler MM. Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis. Mol Cell Biol 1990; 10:3994-4006; PMID:2196442
  • Gallie DR, Le H, Caldwell C, Tanguay RL, Hoang NX, Browning KS. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 1997; 272:1046-53; PMID:8995401; http://dx.doi.org/10.1074/jbc.272.2.1046
  • Schwartz DC, Parker R. Interaction of mRNA translation and mRNA degradation in Saccharomyces cerevisiae. In Sonenberg, N, Hershey, JWB., Mathews, M.B (eds), Translational Control of Gene Expression. Cold Spring Harbor press, New York, pp. 807-25, 2000.
  • Le H, Chang S-C, Tanguay RL, Gallie DR. The wheat poly(A)-binding protein functionally complements pab1 in yeast. Eur J Biochem 1997a; 243:350-7; PMID:9030759; http://dx.doi.org/10.1111/j.1432-1033.1997.0350a.x
  • Friend K, Brook M, Bezirci FB, Sheets MD, Gray NK, Seli E. Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochem J 2012; 445:93-100; PMID:22497250; http://dx.doi.org/10.1042/BJ20120304
  • Brook M, McCracken L, Reddington JP, Lu ZL, Morrice NA, Gray NK. The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Biochem J 2012; 441:803-12; PMID:22004688; http://dx.doi.org/10.1042/BJ20111474
  • Duncan R, Hershey JW. Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification. J Biol Chem 1985; 260:5493-7; PMID:3886657
  • Duncan RF, Hershey JW. Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J Cell Biol 1989; 109:1467-81; PMID:2793930; http://dx.doi.org/10.1083/jcb.109.4.1467
  • Manzella JM, Rychlik W, Rhoads RE, Hershey JW, Blackshear PJ. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 1991; 266:2383-9; PMID:1989989
  • Hilliker A, Gao Z, Jankowsky E, Parker R. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell 2011; 43:962-72; PMID:21925384; http://dx.doi.org/10.1016/j.molcel.2011.08.008
  • Tarn WY, Chang TH. The current understanding of Ded1pDDX3 homologs from yeast to human. RNA Biol 2009; 6:17-20; PMID:19106629; http://dx.doi.org/10.4161/rna.6.1.7440
  • Dhote V, Sweeney TR, Kim N, Hellen CU, Pestova TV. Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Proc Natl Acad Sci U S A 2012; 109:E3150-9; PMID:23047696; http://dx.doi.org/10.1073/pnas.1208014109
  • Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CU, Pestova TV, Frank J. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 2013; 153:1108-19; PMID:23706745; http://dx.doi.org/10.1016/j.cell.2013.04.036
  • Gallie DR. Cap-independent translation conferred by the 5¢-leader of tobacco etch virus is eIF4G-dependent. J Virol 2001; 75:12141-52; PMID:11711605; http://dx.doi.org/10.1128/JVI.75.24.12141-12152.2001
  • Gallie DR. The 5¢-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 2002; 30:3401-11; PMID:12140325; http://dx.doi.org/10.1093/nargkf457
  • Mayberry LK, Allen ML, Dennis MD, Browning KS. Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol 2009; 150:1844-54; PMID:19493973; http://dx.doi.org/10.1104/pp.109.138438
  • Pause A, Méthot N, Svitkin Y, Merrick WC, Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 1994b; 13:1205-15; PMID:8131750
  • Leathers V, Tanguay R, Kobayashi M, Gallie DR. A phylogenetically conserved sequence within viral 3¢ untranslated RNA pseudoknots regulates translation. Mol Cell Biol 1993; 13:5331-47; PMID:8355685
  • Gallie DR, Kobayashi M. The role of the 3¢-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 1994; 142:159-65; PMID:8194747; http://dx.doi.org/10.1016/0378-1119(94)90256-9
  • Gallie DR, Tanguay RL, Leathers V. The tobacco etch viral 5¢ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 1995; 165:233-8; PMID:8522182; http://dx.doi.org/10.1016/0378-1119(95)00521-7
  • Gallie DR, Lewis NJ, Marzluff WF. The histone 3¢-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res 1996; 24:1954-62; PMID:8657580; http://dx.doi.org/10.1093/nar24.10.1954
  • Ling J, Morley SJ, Pain VM, Marzluff WF, Gallie DR. The histone 3¢-terminal stem loop binding protein enhances translation through a functional and physical interaction with eIF4G and eIF3. Mol Cell Biol 2002; 22:7853-67; PMID:12391154; http://dx.doi.org/10.1128/MCB.22.22.7853-7867.2002
  • Krab IM, Caldwell C, Gallie DR, Bol JF. Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F. J Gen Virol 2005; 86:1841-9; PMID:15914864; http://dx.doi.org/10.1099/vir.0.80796-0
  • Wakiyama M, Imataka H, Sonenberg N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol 2000; 10:1147-50; PMID:10996799; http://dx.doi.org/10.1016/S0960-9822(00)00701-6
  • Prévôt D, Décimo D, Herbreteau CH, Roux F, Garin J, Darlix JL, Ohlmann T. Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning. EMBO J 2003; 22:1909-21; PMID:12682023; http://dx.doi.org/10.1093/embojcdg175
  • Yanagiya A, Svitkin YV, Shibata S, Mikami S, Imataka H, Sonenberg N. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol 2009; 29:1661-9; PMID:19114555; http://dx.doi.org/10.1128/MCB.01187-08
  • Lin TA, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 1994; 266:653-6; PMID:7939721; http://dx.doi.org/10.1126/science.7939721
  • Pause A, Belsham GJ, Gingras A-C, Donzé O, Lin T-A, Lawrence JC Jr., Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5¢-cap function. Nature 1994a; 371:762-7; PMID:7935836; http://dx.doi.org/10.1038371762/a0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.