6,912
Views
33
CrossRef citations to date
0
Altmetric
Review

Links between thermoregulation and aging in endotherms and ectotherms

&
Pages 73-85 | Received 30 Jun 2014, Accepted 13 Nov 2014, Published online: 14 Apr 2015

References

  • Laertius D. The lives and opinions of eminent philosophers. Translated by Charles D. Yonge. London: Bohn H. G., 1853
  • vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum Genet 2006; 119:312-21; PMID:16463022; http://dx.doi.org/10.1007/s00439-006-0144-y
  • Carrillo AE, Flouris AD. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res Rev 2011; 10:153-62; PMID:20969980; http://dx.doi.org/10.1016/j.arr.2010.10.001
  • Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenco J, Fraifeld VE, de Magalhaes JP. LongevityMap: a database of human genetic variants associated with longevity. Trends Genet 2013; 29:559-60; PMID:23998809; http://dx.doi.org/10.1016/j.tig.2013.08.003
  • Wheeler HE, Kim SK. Genetics and genomics of human ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:43-50; PMID:21115529; http://dx.doi.org/10.1098/rstb.2010.0259
  • Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL. The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish twin registry. J Gerontol A Biol Sci Med Sci 1998; 53:M441-6; PMID:9823748; http://dx.doi.org/10.1093/gerona/53A.6.M441
  • McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of Danish twins born 1870-1880. J Gerontol 1993; 48:B237-44; PMID:8227991; http://dx.doi.org/10.1093/geronj/48.6.B237
  • South FE, Hannon JP, Willis JR. Hibernation and Hypothermia: Perspectives and Challenges. New York: Elsevier Scientific Publishing Co., 1972
  • Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP, et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 2006; 314:825-8; PMID:17082459; http://dx.doi.org/10.1126/science.1132191
  • Kent S. Body temperature and life span. Geriatrics 1978; 33:109-12, 16; PMID:355058
  • Tabarean I, Morrison B, Marcondes MC, Bartfai T, Conti B. Hypothalamic and dietary control of temperature-mediated longevity. Ageing Res Rev 2010; 9:41-50; PMID:19631766; http://dx.doi.org/10.1016/j.arr.2009.07.004
  • Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ. Biomarkers of caloric restriction may predict longevity in humans. Science 2002; 297:811; PMID:12161648; http://dx.doi.org/10.1126/science.1071851
  • Sanchez-Alavez M, Alboni S, Conti B. Sex- and age-specific differences in core body temperature of C57Bl/6 mice. Age (Dordr) 2011; 33:89-99; PMID:20635153; http://dx.doi.org/10.1007/s11357-010-9164-6
  • Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977; 6:413-29; PMID:926867; http://dx.doi.org/10.1016/0047-6374(77)90043-4
  • Liu RK, Walford RL. Increased growth and life-span with lowered ambient temperature in the annual fish, cynolebias adloffi. Nature 1966; 212:1277-8; http://dx.doi.org/10.1038/2121277a0
  • Munch SB, Salinas S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc Natl Acad Sci U S A 2009; 106:13860-4; PMID:19666552; http://dx.doi.org/10.1073/pnas.0900300106
  • Mori I, Sasakura H. Aging: shall we take the high road? Curr Biol 2009; 19:R363-4; PMID:19439256; http://dx.doi.org/10.1016/j.cub.2009.03.040
  • Karlsson B, Wiklund C. Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 2005; 74:99-104; http://dx.doi.org/10.1111/j.1365-2656.2004.00902.x
  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science 2001; 293:2248-51; PMID:11567137; http://dx.doi.org/10.1126/science.1061967
  • Lee SJ, Kenyon C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 2009; 19:715-22; PMID:19375320; http://dx.doi.org/10.1016/j.cub.2009.03.041
  • Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu XZ. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 2013; 152:806-17; PMID:23415228; http://dx.doi.org/10.1016/j.cell.2013.01.020
  • Mattson MP. Perspective: does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9:69-76; PMID:19969105; http://dx.doi.org/10.1016/j.arr.2009.11.004
  • Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 2001; 15:2048-50; PMID:11511509
  • Tsuboyama-Kasaoka N, Tsunoda N, Maruyama K, Takahashi M, Kim H, Ikemoto S, Ezaki O. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Biochem Biophys Res Commun 1998; 247:498-503; PMID:9642158; http://dx.doi.org/10.1006/bbrc.1998.8818
  • Valente A, Jamurtas AZ, Koutedakis Y, Flouris AD. Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development. Biol Rev Camb Philos Soc 2015; 90(1):77–88; PMID:24708171; http://dx.doi.org/10.1111/brv.12099
  • Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53 Suppl 1:S130-5; http://dx.doi.org/10.2337/diabetes.53.2007.S130
  • Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology 2008; 149:942-9; PMID:18202123; http://dx.doi.org/10.1210/en.2007-1713
  • Kenny GP, Flouris AD. The human thermoregulatory system and its response to thermal stress. Protective Clothing: Managing Thermal Stress. In: Wang F, Gao C, eds. Cambridge, UK: Woodhead Publishing Ltd. in Association with The Textile Institute, 2014:319-49
  • Kellogg DL Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 2006; 100:1709-18; PMID:16614368; http://dx.doi.org/10.1152/japplphysiol.01071.2005
  • Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol 2006; 100:1692-701; PMID:16614366; http://dx.doi.org/10.1152/japplphysiol.01124.2005
  • Flouris AD. Functional architecture of behavioural thermoregulation. Eur J Appl Physiol 2011; 111:1-8; PMID:20711785; http://dx.doi.org/10.1007/s00421-010-1602-8
  • Kroetz FW, Leon DF, Leonard JJ. The diagnosis of acute circulatory failure: shock and syncope. Prog Cardiovasc Dis 1967; 10:262-82; PMID:4867786; http://dx.doi.org/10.1016/0033-0620(67)90013-8
  • Fox RH, Woodward PM, Exton-Smith AN, Green MF, Donnison DV, Wicks MH. Body temperatures in the elderly: a national study of physiological, social, and environmental conditions. Br Med J 1973; 1:200-6; PMID:4686555; http://dx.doi.org/10.1136/bmj.1.5847.200
  • Fox RH, MacGibbon R, Davies L, Woodward PM. Problem of the old and the cold. Br Med J 1973; 1:21-4; PMID:4683633; http://dx.doi.org/10.1136/bmj.1.5844.21
  • Kvistad CE, Thomassen L, Waje-Andreassen U, Naess H. Low body temperature associated with severe ischemic stroke within 6 hours of onset: the Bergen NORSTROKE Study. Vasc Health Risk Manag 2012; 8:333-8; PMID:22701327; http://dx.doi.org/10.2147/VHRM.S31614
  • Kvistad CE, Oygarden H, Thomassen L, Waje-Andreassen U, Naess H. Persistent middle cerebral artery occlusion associated with lower body temperature on admission. Vasc Health Risk Manag 2013; 9:297-302; PMID:23807851; http://dx.doi.org/10.2147/VHRM.S44570
  • Sund-Levander M, Wahren LK. The impact of ADL status, dementia and body mass index on normal body temperature in elderly nursing home residents. Arch Gerontol Geriatr 2002; 35:161-9; PMID:14764354; http://dx.doi.org/10.1016/S0167-4943(02)00019-5
  • Rikke BA, Johnson TE. Lower body temperature as a potential mechanism of life extension in homeotherms. Exp Gerontol 2004; 39:927-30; PMID:15217694; http://dx.doi.org/10.1016/j.exger.2004.03.020
  • Liu RK, Walford RL. The effect of lowered body temperature on lifespan and immune and non-immune processes. Gerontologia 1972; 18:363-88; PMID:4618218; http://dx.doi.org/10.1159/000211944
  • Walsh NP, Whitham M. Exercising in environmental extremes : a greater threat to immune function? Sports Med 2006; 36:941-76; PMID:17052132; http://dx.doi.org/10.2165/00007256-200636110-00003
  • Lackovic V, Borecky L, Vigas M, Rovensky J. Activation of NK cells in subjects exposed to mild hyper- or hypothermic load. J Interferon Res 1988; 8:393-402; PMID:2457640; http://dx.doi.org/10.1089/jir.1988.8.393
  • Brenner IK, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, Shek PN. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol 1999; 87:699-710; PMID:10444630
  • Cross MC, Radomski MW, VanHelder WP, Rhind SG, Shephard RJ. Endurance exercise with and without a thermal clamp: effects on leukocytes and leukocyte subsets. J Appl Physiol 1996; 81:822-9; PMID:8872652
  • Beilin B, Shavit Y, Razumovsky J, Wolloch Y, Zeidel A, Bessler H. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology 1998; 89:1133-40; PMID:9822001; http://dx.doi.org/10.1097/00000542-199811000-00013
  • Jansky L, Pospisilova D, Honzova S, Ulicny B, Sramek P, Zeman V, Kaminkova J. Immune system of cold-exposed and cold-adapted humans. Eur J Appl Physiol Occup Physiol 1996; 72:445-50; PMID:8925815; http://dx.doi.org/10.1007/BF00242274
  • Kim K, Suzuki K, Peake J, Ahn N, Ogawa K, Hong C, Kim S, Lee I, Park J. Physiological and leukocyte subset responses to exercise and cold exposure in cold-acclimatized skaters. Biol Sport 2014; 31:39-48; PMID:24917688; http://dx.doi.org/10.5604/20831862.1086731
  • Castellani JW, M Brenner IK, Rhind SG. Cold exposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 2002; 34:2013-20; PMID:12471310; http://dx.doi.org/10.1097/00005768-200212000-00023
  • Roberts NJ Jr., Steigbigel RT. Hyperthermia and human leukocyte functions: effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils. Infect Immun 1977; 18:673-9; PMID:412788
  • Matz JM, Blake MJ, Tatelman HM, Lavoi KP, Holbrook NJ. Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J Physiol 1995; 269:R38-47; PMID:7631901
  • Matz JM, LaVoi KP, Epstein PN, Blake MJ. Thermoregulatory and heat-shock protein response deficits in cold-exposed diabetic mice. Am J Physiol 1996; 270:R525-32; PMID:8780216
  • Shephard RJ, Shek PN. Cold exposure and immune function. Can J Physiol Pharmacol 1998; 76:828-36; PMID:10066131; http://dx.doi.org/10.1139/y98-097
  • Jaattela M. Overexpression of major heat shock protein hsp70 inhibits tumor necrosis factor-induced activation of phospholipase A2. J Immunol 1993; 151:4286-94; PMID:8409402
  • Izawa S, Kim K, Akimoto T, Ahn N, Lee H, Suzuki K. Effects of cold environment exposure and cold acclimatization on exercise-induced salivary cortisol response. Wilderness Environ Med 2009; 20:239-43; PMID:19737029; http://dx.doi.org/10.1580/07-WEME-OR-123R2.1
  • Heroux O, Campbell JS. A study of the pathology and life span of 6 degree C- and 30 degree C.-acclimated rats. Lab Invest 1960; 9:305-15; PMID:14401326
  • Holloszy JO, Smith EK. Longevity of cold-exposed rats: a reevaluation of the “rate-of-living theory.” J Appl Physiol 1986; 61:1656-60; PMID:3781978
  • Flouris AD, Spiropoulos Y, Sakellariou GJ, Koutedakis Y. Effect of seasonal programming on fetal development and longevity: links with environmental temperature. Am J Hum Biol 2009; 21:214-6; PMID:19194861; http://dx.doi.org/10.1002/ajhb.20818
  • Doblhammer G, Vaupel JW. Lifespan depends on month of birth. Proc Natl Acad Sci U S A 2001; 98:2934-9; PMID:11226344; http://dx.doi.org/10.1073/pnas.041431898
  • Moore SE, Cole TJ, Poskitt EM, Sonko BJ, Whitehead RG, McGregor IA, Prentice AM. Season of birth predicts mortality in rural Gambia. Nature 1997; 388:434; PMID:9242401; http://dx.doi.org/10.1038/41245
  • Vaiserman AM, Collinson AC, Koshel NM, Belaja, II, Voitenko VP. Seasonal programming of adult longevity in Ukraine. Int J Biometeorol 2002; 47:49-52; PMID:12461609; http://dx.doi.org/10.1007/s00484-002-0144-0
  • Hille ET, Weisglas-Kuperus N, van Goudoever JB, Jacobusse GW, Ens-Dokkum MH, de Groot L, Wit JM, Geven WB, Kok JH, de Kleine MJ, et al. Functional outcomes and participation in young adulthood for very preterm and very low birth weight infants: the Dutch Project on Preterm and Small for Gestational Age Infants at 19 years of age. Pediatrics 2007; 120:e587-95; PMID:17766499; http://dx.doi.org/10.1542/peds.2006-2407
  • Carrillo AE, Koutedakis Y, Flouris AD. Early life mammalian biology and later life physical performance: maximising physiological adaptation. Br J Sports Med 2011; 45:1000-1; PMID:21798868; http://dx.doi.org/10.1136/bjsports-2011-090198
  • Flouris AD, Carrillo AE. Influence of early life factors on elite performance. J Appl Physiol 2011; 110:284; discussion 94; PMID:21542161
  • Julian CG, Wilson MJ, Moore LG. Evolutionary adaptation to high altitude: a view from in utero. Am J Hum Biol 2009; 21:614-22; PMID:19367578; http://dx.doi.org/10.1002/ajhb.20900
  • Buchowicz B, Yu T, Nance DM, Zaldivar FP, Cooper DM, Adams GR. Increased rat neonatal activity influences adult cytokine levels and relative muscle mass. Pediatr Res 2010; 68:399-404; PMID:20657345
  • Symonds ME, Bird JA, Clarke L, Gate JJ, Lomax MA. Nutrition, temperature and homeostasis during perinatal development. Exp Physiol 1995; 80:907-40; PMID:8962708
  • Clarke L, Heasman L, Firth K, Symonds ME. Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs. Am J Physiol 1997; 272:R1931-9; PMID:9227610
  • Clarke L, Buss DS, Juniper DT, Lomax MA, Symonds ME. Adipose tissue development during early postnatal life in ewe-reared lambs. Exp Physiol 1997; 82:1015-27; PMID:9413733; http://dx.doi.org/10.1017/S095806709701645X
  • Rial E, Zardoya R. Oxidative stress, thermogenesis and evolution of uncoupling proteins. J Biol 2009; 8:58; PMID:19589183; http://dx.doi.org/10.1186/jbiol155
  • Kontani Y, Wang Y, Kimura K, Inokuma KI, Saito M, Suzuki-Miura T, Wang Z, Sato Y, Mori N, Yamashita H. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell 2005; 4:147-55; PMID:15924571; http://dx.doi.org/10.1111/j.1474-9726.2005.00157.x
  • Emre Y, Hurtaud C, Karaca M, Nubel T, Zavala F, Ricquier D. Role of uncoupling protein UCP2 in cell-mediated immunity: how macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci U S A 2007; 104:19085-90; PMID:18006654; http://dx.doi.org/10.1073/pnas.0709557104
  • Sramkova D, Krejbichova S, Vcelak J, Vankova M, Samalikova P, Hill M, Kvasnickova H, Dvorakova K, Vondra K, Hainer V, et al. The UCP1 gene polymorphism A-3826G in relation to DM2 and body composition in Czech population. Exp Clin Endocrinol Diabetes 2007; 115:303-7; PMID:17516293; http://dx.doi.org/10.1055/s-2007-977732
  • Eriksson H, Svardsudd K, Larsson B, Welin L, Ohlson LO, Wilhelmsen L. Body temperature in general population samples. The study of men born in 1913 and 1923. Acta Med Scand 1985; 217:347-52; PMID:4013825; http://dx.doi.org/10.1111/j.0954-6820.1985.tb02708.x
  • Rising R, Fontvieille AM, Larson DE, Spraul M, Bogardus C, Ravussin E. Racial difference in body core temperature between Pima Indian and Caucasian men. Int J Obes Relat Metab Disord 1995; 19:1-5; PMID:7719384
  • Waalen J, Buxbaum JN. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol A Biol Sci Med Sci 2011; 66:487-92; PMID:21324956; http://dx.doi.org/10.1093/gerona/glr001
  • Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, Lackner KJ, Iz M, Meyer J, Darius H, et al. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-α levels. Thromb Haemost 2004; 92:419-24; PMID:15269840
  • Vachharajani V, Granger DN. Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life 2009; 61:424-30; PMID:19319966; http://dx.doi.org/10.1002/iub.169
  • Hansen JC, Gilman AP, Odland JO. Is thermogenesis a significant causal factor in preventing the "globesity" epidemic? Med Hypotheses 2010; 75:250-6; PMID:20363565; http://dx.doi.org/10.1016/j.mehy.2010.02.033
  • Koutedakis Y, Bouziotas C, Flouris AD, Nelson PN. Longitudinal modeling of adiposity in periadolescent Greek schoolchildren. Med Sci Sports Exerc 2005; 37:2070-4; PMID:16331131; http://dx.doi.org/10.1249/01.mss.0000178099.80388.15
  • Douketis JD, Sharma AM. Obesity and cardiovascular disease: pathogenic mechanisms and potential benefits of weight reduction. Semin Vasc Med 2005; 5:25-33; PMID:15968577; http://dx.doi.org/10.1055/s-2005-871739
  • Duffy PH, Feuers RJ, Hart RW. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol Int 1990; 7:291-303; PMID:2085870; http://dx.doi.org/10.3109/07420529009064635
  • Lane MA, Baer DJ, Rumpler WV, Weindruch R, Ingram DK, Tilmont EM, Cutler RG, Roth GS. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci U S A 1996; 93:4159-64; PMID:8633033; http://dx.doi.org/10.1073/pnas.93.9.4159
  • Seebacher F. Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates. J Exp Biol 2009; 212:2885-91; PMID:19717669; http://dx.doi.org/10.1242/jeb.024430
  • Angilletta J, Michael J, Sears MW, Winters RS. Seasonal variation in reproductive effort and its effect on offspring size in the lizard Sceloporus undulatus. Herpetologica 2001; 57:365-75
  • Stevenson RD. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am Nat 1985; 126:362-86; http://dx.doi.org/10.1086/284423
  • Patapoutian A, Peier AM, Story GM, Viswanath V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 2003; 4:529-39; PMID:12838328; http://dx.doi.org/10.1038/nrn1141
  • Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD. Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 2010; 83:721-32; PMID:20586603; http://dx.doi.org/10.1086/649964
  • Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999; 61:243-82; PMID:10099689; http://dx.doi.org/10.1146/annurev.physiol.61.1.243
  • Bouchard P, Guderley H. Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Onchorhynchus mykiss. J Exp Biol 2003; 206:3455-65; PMID:12939376; http://dx.doi.org/10.1242/jeb.00578
  • Rogers K, Seebacher F, Thompson MB. Biochemical acclimation of metabolic enzymes in response to lowered temperatures in tadpoles of Limnodynastes peronii. Comp Biochem Physiol A 2004; 137:731-8; http://dx.doi.org/10.1016/j.cbpb.2004.02.008
  • Angilletta J, J. M. Thermal Adaptation. A Theoretical and Empirical Synthesis. Oxford: Oxford University Press, 2009
  • Tomanek L, Somero GN. Evolutionary and acclimation induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 1999; 202:2925-36; PMID:10518474
  • Wakeling JM, Cole NJ, Kemp KM, Johnston IA. The biomechanics and evolutionary significance of thermal acclimation in the common carp Cyprinus carpio. Am J Physiol Regul Integr Comp Physiol 2000; 279:657-65
  • Narum SR, Campbell RM, Meyer KA, Miller MR, Hardy RW. Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol 2013; 22(11):3090-7
  • Seebacher F, Franklin CE. Prostaglandins are important in thermoregulation of a lizard (Pogona vitticeps). Proc R Soc Lond B Biol Sci Suppl 2003; 270:S50-S3; http://dx.doi.org/10.1098/rsbl.2003.0007
  • Bogert CM. Thermoregulation in reptiles, a factor in evolution. Evolution 1949; 3:195-211; PMID:18138377; http://dx.doi.org/10.2307/2405558
  • Adolph SC, Porter WP. Temperature, activity, and lizard life histories. Am Nat 1993; 142:273-95; PMID:19425979; http://dx.doi.org/10.1086/285538
  • Brattstrom BH. Amphibian temperature regulation studies in the field and laboratory. Am Zool 1979; 19: 345-56
  • Vitt LJ, Janalee P. Caldwell. Herpetology. An introductiory biology of amphibians and reptiles. London, UK: Academic Press, Elsevier, 2009
  • Grant BW, Dunham AE. Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus. Ecology 1990; 71:1765-76; http://dx.doi.org/10.2307/1937584
  • Porter WP, Mitchell JW, Beckman WA, DeWitt CB. Behavioral implications of mechanistic ecology. Thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 1973; 13:1-54; http://dx.doi.org/10.1007/BF00379617
  • Huey RB. Behavioral thermoregulation in lizards: importance of associated costs. Science 1974; 184:1001-3; PMID:4826166; http://dx.doi.org/10.1126/science.184.4140.1001
  • Huey RB. Winter thermal ecology of the Iguanid lizard Tropidurus peruvianus. Copeia 1974:149-55; http://dx.doi.org/10.2307/1443017
  • Porter WP, Tracy R. Biophysical analyses of energetics, time-space utilization, and distributional limits. Lizard ecology: Studies of a model organism. In: Huey RB, Pianka ER, Schoener TW, eds. Cambridge, Massachusetts, and London, England: Harvard University Press, 1983:55-83
  • Sinervo B, Adolph SC. Thermal sensitivity of growth-rate in hatchling Sceloporus lizards - Environmental, behavioral and genetic-aspects. Oecologia 1989; 78:411-9; http://dx.doi.org/10.1007/BF00379118
  • Dunham AE, Miles DB, Reznick DN. Life History patterns in squamate reptiles. Biology of the Reptilia. In: Huey CGaRB, ed. New York: Alan R. Liss, 1988:441-522
  • Van Damme R, Bauwens D, Verheyen RF. Selected body temperatures in lizard Lacerta vivipara: variation within and between populations. J Therm Biol 1986; 11:219-22; http://dx.doi.org/10.1016/0306-4565(86)90006-9
  • Bauwens D, Verheyen RF. Variation of reproductive traits in a population of the lizard Lacerta vivipara. Holar Ecol 1987; 10:120-7
  • Sorci G, Clobert J, Belichon S. Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. J Ani Ecol 1996; 65:781-90; http://dx.doi.org/10.2307/5676
  • Miquel J, Lundgren PR, Bensch KG, Atlan H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 1976; 5:347-70; PMID:823384; http://dx.doi.org/10.1016/0047-6374(76)90034-8
  • Van Voorhies WA, Ward S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 1999; 96:11399-403; PMID:10500188; http://dx.doi.org/10.1073/pnas.96.20.11399
  • Ray C. The application of Bergmann's and Allen's Rules to the poikilotherms. J Morphol 1960; 106:85-108; PMID:14436612; http://dx.doi.org/10.1002/jmor.1051060104
  • Stearns SC, Koella JC. The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Int J Org Evolution 1986; 40:893-913
  • Perrin N. Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus (Müller). Funct Ecol 1988; 2:283-8; http://dx.doi.org/10.2307/2389399
  • Yampolsky LY, Scheiner SM. Why larger offspring at lower temperatures? A Demographic Approach The Am Naturalist 1996; 147:86-100; http://dx.doi.org/10.1086/285841
  • Pianka ER. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology 1970; 51:703-20; http://dx.doi.org/10.2307/1934053
  • Pianka ER, Pianka HD. The ecology of Moloch horridus (Lacertilia: Agamidae) in Western Australia. Copeia 1970; 1970:90-103; http://dx.doi.org/10.2307/1441978
  • Tinkle DW. The role of environment in the evolution of life history differences within and between lizard species. A symposium on Ecosystematics, In: Allen RT, James FC, eds. 1972:77-100
  • Ballinger RE. Life-history variations. Lizard ecology: Studies of a model organism. In: Huey RB, Eric R. Pianka, and Thomas W. Schoener, ed. Cambridge, Massachusetts, and London, England: Harvard University Press, 1983:241-60
  • Sinervo B. The evolution of maternal investment in lizards: an experimental and comparative analysis of egg size and its effects on offspring performance. Evolution 1990; 44:279-94; http://dx.doi.org/10.2307/2409407
  • Avery RA. Physiological aspects of Iizard growth: the role of thermoregulation. Symp Zool Soc Land 1984; 52:407-24
  • Ferguson GW, Talent LG. Life-history traits of the lizard Sceloporus undulatus from two populations raised in a common laboratory environment. Oecologia 1993; 93:88-94
  • Sacher GA. Longevity and ageing in vertebrate evolution. BioScience 1978; 28:497-501; http://dx.doi.org/10.2307/1307295
  • Castanet J. Age estimation and longevity in reptiles. Gerontology 1994; 40:174-92; PMID:7926855; http://dx.doi.org/10.1159/000213586
  • Steams SC. Life history tactics: a review of the ideas. Q Rev Biol 1976; 51:3-47; PMID:778893; http://dx.doi.org/10.1086/409052
  • Castanet J, Naulleau G. La squelettochronologie chez les Reptiles II. Resultats experimentaux sur la signification des marques de croissance squelettiques chez les Serpents. Remarques sur la croissance et la longevite de la Vipere Aspic. (I). Annales des Sciences Naturelles, Zoologie, Paris - 13c Serie 1985; 7:41-62
  • Speakman JR. Body size, energy metabolism and lifespan. J Exp Biol 2005; 208:1717-30; PMID:15855403; http://dx.doi.org/10.1242/jeb.01556
  • Glaser FT, Stanewsky R. Temperature synchronization of the Drosophila circadian clock. Curr Biol 2005; 15:1352-63; PMID:16085487; http://dx.doi.org/10.1016/j.cub.2005.06.056
  • Boothroyd CE, Wijnen H, Naef F, Saez L, Young MW. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 2007; 3:e54; PMID:17411344
  • Bauwens D, Garland Jr. T, Castilla AM, van Damme R. Evolution of sprint speed in lacertid lizards: Morphological, physiological, and behavioral covariation. Evolution 1995; 49:848-63; http://dx.doi.org/10.2307/2410408
  • Hertz PE, Huey RB, Stevenson RD. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 1993; 142:796-818; PMID:19425957; http://dx.doi.org/10.1086/285573
  • Brattstrom BH. Body temperatures of reptiles. Am Midl Nat 1965; 73:376-422; http://dx.doi.org/10.2307/2423461
  • Heath JE. Behavioral thermoregulation of body temperature in poikilotherms. Physiologist 1970; 13:399-410; PMID:4920512
  • Licht P, Dawson WP, Shoemaker VH, Main AR. Observations on the thermal relations of western Australian lizards. Copeia 1966; 1966:97-110; http://dx.doi.org/10.2307/1440766
  • Huey RE. Temperature, physiology, and the ecology of reptiles. Biology of the Reptilia Physiology C In: Gans C, Pough HF, eds. London: Academic Press, 1982:25-91
  • Cabanac M, Hammel HT, Hardy JD. Tiliqua scincoides. Temperature sensitive units in lizard brain. Science 1967; 158:1050-1; PMID:6054482; http://dx.doi.org/10.1126/science.158.3804.1050
  • Hertz PE. Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiological ecology. J Zool, London 1981; 195:25-37; http://dx.doi.org/10.1111/j.1469-7998.1981.tb01891.x
  • Hertz PE, Huey RB. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 1981; 62:515-21; http://dx.doi.org/10.2307/1937714
  • Christian KA, Tracy CR, Porter WP. Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology 1983; 64:463-8; http://dx.doi.org/10.2307/1939965
  • Adolph SC. Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 1990; 71:315-27; http://dx.doi.org/10.2307/1940271
  • Bauwens D, Hertz PE, Castilla AM. Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology 1996; 77:1818-30; http://dx.doi.org/10.2307/2265786
  • Webb JK, Shine R. Using thermal ecology to predict retreat-site selection by an endangered snake species. Biol Conserv 1998; 86:233-42; http://dx.doi.org/10.1016/S0006-3207(97)00180-8
  • Huey RB, Peterson CR, Arnold SJ, Porter WP. Hot rocks and not-so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 1989; 70:931-44; http://dx.doi.org/10.2307/1941360
  • Kearney M, Predavec M. Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 2000; 81:2984-96 ; http://dx.doi.org/10.1890/0012-9658(2000)081%5b2984:DNETAS%5d2.0.CO;2
  • Kearney M. Hot rocks and much-too-hot rocks: seasonal patterns of retreat-site selection by a nocturnal ectotherm. J Ther Biol 2002; 27 205-18; http://dx.doi.org/10.1016/S0306-4565(01)00085-7
  • Schmidt-Nielsen K, Dawson WR. Terrestrial animals in dry heat: desert reptiles. Handbook of Physiology Section 4: Adaptation to the Environment. In: Field J, ed. Washington, DC: American Physiology Society, 1964:467-80
  • Heatwole H, Lin TH, Villalón E, Muñíz A, Matta A. Some aspects of the thermal ecology of Puerto Rican Anoline lizards. J Herpetol 1969; 3:65-77; http://dx.doi.org/10.2307/1563225
  • Huey RB, Pianka ER. Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 1977; 58:1066-75; http://dx.doi.org/10.2307/1936926
  • Carrascal LM, Díaz JA. Thermal ecology and spatio-temporal distribution of the Mediterranean lizard Psammodromus algirus. Holarctic Ecol 1989; 12:137-43
  • Pearson OP. Habits of the lizard Liolaemus multiformis multiformis at high altitudes in southern Peru. Copeia 1954; 1954:111-6; http://dx.doi.org/10.2307/1440329
  • Van Damme R, Bauwens D, Castilla AM, Verheyen RF. Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecologia 1989; 80:516-24; http://dx.doi.org/10.1007/BF00380076
  • Díaz JA, Cabezas-Días S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct Ecol 2004; 18:867-75; http://dx.doi.org/10.1111/j.0269-8463.2004.00916.x
  • Martín J, López P, Carrascal LM, Salvador A. Adjustment of basking postures in the high-altitude Iberian rock lizard (Lacerta monticola). Can J Zool 1995; 73:1065-8; http://dx.doi.org/10.1139/z95-126
  • Heath JE. Temperature regulation and diurnal activity in horned lizards. Univ Calif Publ Zool 1965; 64:97-136
  • Hammel HT, Caldwell FT, Jr., Abrams RM. Regulation of body temperature in the blue-tongued lizard. Science 1967; 156:1260-2; PMID:6025552; http://dx.doi.org/10.1126/science.156.3779.1260
  • Spellerberg IF. Thermal ecology of allopatric lizards (Sphenomorphus) in Southeast Australia. I. The Environ Lizard Critical Temperatures Oecologia 1972; 9:371-83
  • Autumn K, De Nardo DF. Behavioral thermoregulation increases growth rate in a nocturnal lizard. J Herpetol 1995; 29:157-62; http://dx.doi.org/10.2307/1564552
  • Angilletta MJ Jr., Werner YL. Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998; 1998:736-42; http://dx.doi.org/10.2307/1447806
  • Piantoni C, Ibargüengoytía NR, Cussac VE. Growth and age of the southernmost distributed gecko of the world (Homonota darwini) studied by skeletochronology. Amphibia-Reptilia 2006; 27:393-400; http://dx.doi.org/10.1163/156853806778190060
  • Parker WS, Pianka ER. Further ecological observations on the western banded gecko, Coleonyx variegatus. Copeia 1973; 1974:528-31; http://dx.doi.org/10.2307/1442544
  • Huey RB, Webster TP. Thermal biology of a solitary lizard: Anolis marmoratus of Guadeloupe, Lesser antilles. Ecology 1975; 56:445-52; http://dx.doi.org/10.2307/1934975
  • Huey RB, Slatkin M. Cost and benefits of lizard thermoregulation. Q Rev Biol 1976; 51:363-84; PMID:981504; http://dx.doi.org/10.1086/409470
  • Dawson WR. On the physiological significance of the preferred body temperatures of reptiles. Perspectives of biophysical ecology. In: Gates DM, Schmerl RB, ed. New York: Springer, 1975
  • Bartholomew GA. The role of physiology in the distribution of terrestrial vertebrates. Zoogeography. In: CL H, ed. Washington, DC: AAAS, 1958:81-95
  • Huey RB, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am Zool 1979; 19:357-66
  • Cowles RB, Bogert CM. A preliminary study of the thermal requirements of desert reptiles. Bull Am Museum Nat His 1944; 83:261-96
  • Seebacher F, Franklin CE. Physiological mechanisms of thermoregulation in reptiles: a review. J Comp Physiol B 2005; 175:533-41; PMID:16047177; http://dx.doi.org/10.1007/s00360-005-0007-1
  • Seebacher F, Murray SA. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles. PLoS One 2007; 2:e281; PMID:17356692; http://dx.doi.org/10.1371/journal.pone.0000281
  • Galli GLJ, Skovgaard N, Abe AS, Taylor EW, Wang T. The adrenergic regulation of the cardiovascular system in the South American rattlesnake, Crotalis durissus. Comp Biochem Physiol A 2007; 148:510-20; http://dx.doi.org/10.1016/j.cbpa.2007.06.420
  • Ganslosser U. Temperature, physiology, and the ecology of reptiles. Encyclopedia of Ecology. In: Jorgensen SE, Fath BD, eds. London: Elsevier, 2008:3550-7
  • Hochscheid S, Bentivegna F, Speakman JR. Regional blood flow in sea turtles: Implications for heat exchange in an aquatic ectotherm. Physiol Biochem Zool 2002; 75:66-76; PMID:11880979; http://dx.doi.org/10.1086/339050
  • Seebacher F, Franklin CE. Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). J Comp Physiol B 2004; 174:205-10; PMID:14722721; http://dx.doi.org/10.1007/s00360-003-0331-2
  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L. Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 1998; 201:1-12; PMID:9390931
  • Fangue NA, Richards JG, Schulte PM. Do mitochondrial properties explain intraspecific variation in thermal tolerance? J Exp Biol 2009; 212:514-22; PMID:19181899; http://dx.doi.org/10.1242/jeb.024034
  • Wodke E. Effects of acclimation temperature on oxidative metabolism of eel (Anguilla anguilla). One. Liver and red muscle - changes in mitochondrial content and in oxidative capacity of isolated coupled mitochondria. J Comp Physiol B 1974; 91:309-32; http://dx.doi.org/10.1007/BF00698060
  • Lucassen M, Schmidt A, Eckerle LG, Pörtner HO. Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Am J Physiol 2003; 285:R1410-R20
  • St-Pierre J, Charest P, Guderley H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatization of rainbow trout Oncorhynchus mykiss. J Exp Biol 1998; 201:2961-70
  • Guderley H, St-Pierre J. Seasonal cycles of mitochondrial ADP sensitivity and oxidative capacities in trout oxidative muscle. J Comp Physiol B 1999; 169:474-80; PMID:10595316; http://dx.doi.org/10.1007/s003600050244
  • Firth BT, Turner SJ. Sensory, neural, and hormonal aspects of thermoregulation. Biology of the Reptilia Physiology D. In: Gans C, Pough HF, eds. London: Academic Press, 1982:229-74
  • Greenberg GN, Wingfield JC. Stress and reproduction: reciprocal relationships. Hormones and Reproduction in Fishes, Amphibians, and Reptiles. In: Norris DO, Jones RE, eds. New York: Plenum, 1987:461-503
  • Astheimer LB, Buttemer WA, Wingfield JC. Gender and seasonal differences in the adrenocortical response to ACTH challenge in an Arctic passerine, Zonotrichia leucophrys gambelii. Gen Comp Endocrinol 1994; 94:33-43; PMID:8045366; http://dx.doi.org/10.1006/gcen.1994.1057
  • Guillette LJ Jr., Cree A, Rooney AA. Biology of stress: interactions with reproduction, immunology and intermediary metabolism. Health and Welfare of Captive Reptiles. In: Warwick C, Frye FL, Murphy JB, eds. London: Chapman and Hall, 1995:32-81
  • Girling JE, Cree A. Plasma corticosterone levels are not significantly related to reproductive stage in female common geckos (Hoplodactylus maculatus). Gen Comp Endocrinol 1995; 100:273-81; PMID:8775054; http://dx.doi.org/10.1006/gcen.1995.1158
  • Cree A, Tyrrell CL, Preest MR, Thorburn D, Guillette J. Protecting embryos from stress: corticosterone effects and the corticosterone response to capture and confinement during pregnancy in a live-bearing lizard (Hoplodactylus maculatus). Gen Comp Endocrinol 2003; 134:316-29; PMID:14636639; http://dx.doi.org/10.1016/S0016-6480(03)00282-X
  • Jessop TS, Hamann M, Read MA, Limpus CJ. Evidence for a hormonal tactic maximizing green turtle reproduction in response to a pervasive ecological stressor. Gen Comp Endocrinol 2000; 118:407-17; PMID:10843792; http://dx.doi.org/10.1006/gcen.2000.7473
  • Tyrrell CL, Cree A. Relationships between corticosterone concentration and season, time of day and confinement in a wild reptile (Tuatara, Sphenodon punctatus). Gen Comp Endocrinol 1998; 11:97-108; http://dx.doi.org/10.1006/gcen.1997.7051
  • Woodly SK, Painter DL, Moore MC, Wikelski M, Romero LM. Effect of tidal cycle and food intake on the bseline plasma corticosterone rhytm in intertidally oforaging marine iguanas. Gen Comp Endocrinol 2003; 132:216-22; PMID:12812768; http://dx.doi.org/10.1016/S0016-6480(03)00085-6
  • Preest M, Cree AT. Hermoregulatory behavior and raises metabolic rate in the New Zealand common Gecko, Hoplodactylus maculatus. Physiol Biochem Zool 2008; 81:641-50; PMID:18752421; http://dx.doi.org/10.1086/590371
  • Angilletta J, Michael J, Todd D. Steury and Michael W. Sears. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr Comp Biol 2004; 44:498-509; PMID:21676736; http://dx.doi.org/10.1093/icb/44.6.498
  • Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson HR, Bisanti L, D'Ippoliti D, Danova J, et al. Heat effects on mortality in 15 European cities. Epidemiology 2008; 19:711-9; PMID:18520615; http://dx.doi.org/10.1097/EDE.0b013e318176bfcd
  • Morabito M, Crisci A, Moriondo M, Profili F, Francesconi P, Trombi G, Bindi M, Gensini GF, Orlandini S. Air temperature-related human health outcomes: current impact and estimations of future risks in Central Italy. Sci Total Environ 2012; 441:28-40; PMID:23134767; http://dx.doi.org/10.1016/j.scitotenv.2012.09.056
  • Montero JC, Miron IJ, Criado-Alvarez JJ, Linares C, Diaz J. Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975-2003). Sci Total Environ 2012; 414:73-80; PMID:22154213; http://dx.doi.org/10.1016/j.scitotenv.2011.10.009
  • Ballester J, Robine JM, Herrmann FR, Rodo X. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe. Nat Commun 2011; 2:358; PMID:21694706; http://dx.doi.org/10.1038/ncomms1360
  • Flouris AD, Cheung SS, Fowles JR, Kruisselbrink LD, Westwood DA, Carrillo AE, Murphy RJ. Influence of body heat content on hand function during prolonged cold exposures. J Appl Physiol 2006; 101:802-8; PMID:16709657; http://dx.doi.org/10.1152/japplphysiol.00197.2006
  • Flouris AD, Westwood DA, Cheung SS. Thermal balance effects on vigilance during 2-hour exposures to −20°C. Aviat Space Environ Med 2007; 78:679-79
  • Flouris AD, Cheung SS. Human conscious response to thermal input is adjusted to changes in mean body temperature. Br J Sports Med 2008; 43:199-203; PMID:18216157; http://dx.doi.org/10.1136/bjsm.2007.044552
  • Cheung S, Flouris AD. Maximal oxygen uptake regulation as a behavioral mechanism. J Appl Physiol 2009; 106:345; PMID:19202592