2,536
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia

&
Article: e963450 | Received 14 Jun 2014, Accepted 12 Aug 2014, Published online: 23 Dec 2014

References

  • Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243:290-3; PMID:4126434; http://dx.doi.org/10.1038/243290a0
  • Heisterkamp N, Groffen J. Molecular insights into the Philadelphia translocation. Hematol Pathol 1991; 5:1-10; PMID:2050600
  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36:93-9; PMID:6319012; http://dx.doi.org/10.1016/0092-8674(84)90077-1
  • Hernandez SE, Krishnaswami M, Miller AL, Koleske AJ. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 2004; 14:36-44; PMID:14729179; http://dx.doi.org/10.1016/j.tcb.2003.11.003
  • Pasternak G, Hochhaus A, Schultheis B, Hehlmann R. Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res Clin Oncol 1998; 124:643-60; PMID:9879825; http://dx.doi.org/10.1007/s004320050228
  • Boquett JA, Alves JR, de Oliveira CE. Analysis of BCRABL transcripts in healthy individuals. Genet Mol Res 2013; 12:4967-71; PMID:24301757; http://dx.doi.org/10.4238/2013.October.24.8
  • Bayraktar S, Goodman M. Detection of BCR-ABL positive cells in an asymptomatic patient: a case report and literature review. Case Report Med 2010; 2010:939706
  • Biernaux C, Loos M, Sels A, Huez G, Stryckmans P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86:3118-22; PMID:7579406
  • Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92:3362-7; PMID:9787174
  • Ismail SI, Naffa RG, Yousef AM, Ghanim MT. Incidence of bcrabl fusion transcripts in healthy individuals. Mol Med Rep 2014; 9:1271-6; PMID:24535287
  • Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Schuuring E, Kluin PM. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85:2528-36; PMID:7727781
  • McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57:79-88; PMID:2649247; http://dx.doi.org/10.1016/0092-8674(89)90174-8
  • Schuler F, Dolken L, Hirt C, Kiefer T, Berg T, Fusch G, Weitmann K, Hoffmann W, Fusch C, Janz S, et al. Prevalence and frequency of circulating t(14;18)-MBR translocation carrying cells in healthy individuals. Int J Cancer 2009; 124:958-63; PMID:19030176; http://dx.doi.org/10.1002/ijc.23958
  • Roulland S, Kelly RS, Morgado E, Sungalee S, Solal-Celigny P, Colombat P, Jouve N, Palli D, Pala V, Tumino R, et al. t(14;18) Translocation: a predictive blood biomarker for follicular lymphoma. J Clin Oncol 2014; 32:1347-55; PMID:24687831
  • Nucifora G, Birn DJ, Erickson P, Gao J, LeBeau MM, Drabkin HA, Rowley JD. Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood 1993; 81:883-8; PMID:8427996
  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80:1825-31; PMID:1391946
  • Khan AM, Bixby DL. BCR-ABL inhibitors: Updates in the management of patients with chronic-phase chronic myeloid leukemia. Hematology 2013; 19; 249-58; PMID:24143950; http://dx.doi.org/10.1179/1607845413Y.0000000119
  • Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355:2408-17; PMID:17151364; http://dx.doi.org/10.1056/NEJMoa062867
  • Kavalerchik E, Goff D, Jamieson CH. Chronic myeloid leukemia stem cells. J Clin Oncol 2008; 26:2911-5; PMID:18539972; http://dx.doi.org/10.1200/JCO.2008.17.5745
  • Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, Legros L, Charbonnier A, Guerci A, Varet B, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11:1029-35; PMID:20965785; http://dx.doi.org/10.1016/S1470-2045(10)70233-3
  • Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, Dang P, Goyne JM, Slader C, Filshie RJ, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 2013; 122:515-22; PMID:23704092; http://dx.doi.org/10.1182/blood-2013-02-483750
  • Savona M, Talpaz M. Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 2008; 8:341-50; PMID:18385684; http://dx.doi.org/10.1038/nrc2368
  • Volpe G, Panuzzo C, Ulisciani S, Cilloni D. Imatinib resistance in CML. Cancer Lett 2009; 274:1-9; PMID:18653275; http://dx.doi.org/10.1016/j.canlet.2008.06.003
  • Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 2003; 22:7389-95; PMID:14576846; http://dx.doi.org/10.1038/sj.onc.1206942
  • Kantarjian HM, Talpaz M, Giles F, O’Brien S, Cortes J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 2006; 145:913-23; PMID:17179059; http://dx.doi.org/10.7326/0003-4819-145-12-200612190-00008
  • Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92:3829-40; PMID:9808576
  • Barnes DJ, Schultheis B, Adedeji S, Melo JV. Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene 2005; 24:6432-40; PMID:16007188
  • Gaiger A, Henn T, Horth E, Geissler K, Mitterbauer G, Maier-Dobersberger T, Greinix H, Mannhalter C, Haas OA, Lechner K, et al. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 1995; 86:2371-8; PMID:7662984
  • Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Muller MC, Radich JP, Rudoltz M, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23:1054-61; PMID:19282833; http://dx.doi.org/10.1038/leu.2009.38
  • Kumari A, Brendel C, Hochhaus A, Neubauer A, Burchert A. Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 2012; 119:530-9; PMID:22101898; http://dx.doi.org/10.1182/blood-2010-08-303495
  • Ramaraj P, Singh H, Niu N, Chu S, Holtz M, Yee JK, Bhatia R. Effect of mutational inactivation of tyrosine kinase activity on BCRABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res 2004; 64:5322-31; PMID:15289338; http://dx.doi.org/10.1158/0008-5472.CAN-03-3656
  • Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcrabl gene of the Philadelphia chromosome. Science 1990; 247:824-30; PMID:2406902; http://dx.doi.org/10.1126/science.2406902
  • Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 1990; 9:1069-78; PMID:1691092
  • Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcrabl-transduced bone marrow. Blood 1998; 92:3780-92; PMID:9808572
  • Wong S, Witte ON. Modeling Philadelphia chromosome positive leukemias. Oncogene 2001; 20:5644-59; PMID:11607816; http://dx.doi.org/10.1038/sj.onc.1204638
  • Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCRABL. Proc Natl Acad Sci U S A 1990; 87:6649-53; PMID:2204061; http://dx.doi.org/10.1073/pnas.87.17.6649
  • Honda H, Hirai H. Model mice for BCRABL-positive leukemias. Blood Cells Mol Dis 2001; 27:265-78; PMID:11358387; http://dx.doi.org/10.1006/bcmd.2000.0374
  • Honda H, Oda H, Suzuki T, Takahashi T, Witte ON, Ozawa K, Ishikawa T, Yazaki Y, Hirai H. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcrabl: a novel transgenic model for human Ph1-positive leukemias. Blood 1998; 91:2067-75; PMID:9490692
  • Huettner CS, Koschmieder S, Iwasaki H, Iwasaki-Arai J, Radomska HS, Akashi K, Tenen DG. Inducible expression of BCRABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood 2003; 102:3363-70; PMID:12855552; http://dx.doi.org/10.1182/blood-2003-03-0768
  • Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL. Expression of BCRABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 2003; 100:10002-7; PMID:12890867; http://dx.doi.org/10.1073/pnas.1633833100
  • Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2005; 105:324-34; PMID:15331442; http://dx.doi.org/10.1182/blood-2003-12-4369
  • Voncken JW, Kaartinen V, Pattengale PK, Germeraad WT, Groffen J, Heisterkamp N. BCRABL P210 and P190 cause distinct leukemia in transgenic mice. Blood 1995; 86:4603-11; PMID:8541551
  • McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13:7587-95; PMID:8246975
  • McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12:1533-46; PMID:8467803
  • Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21:840-53; PMID:11154271; http://dx.doi.org/10.1128/MCB.21.3.840-853.2001
  • He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcrabl. Blood 2002; 99:2957-68; PMID:11929787; http://dx.doi.org/10.1182/blood.V99.8.2957
  • Smith KM, Yacobi R, Van Etten RA. Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 2003; 12:27-37; PMID:12887890; http://dx.doi.org/10.1016/S1097-2765(03)00274-0
  • Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75:175-85; PMID:8402896; http://dx.doi.org/10.1016/S0092-8674(05)80094-7
  • Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13:764-73; PMID:8112292
  • Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, et al. Critical role for Gab2 in transformation by BCRABL. Cancer Cell 2002; 1:479-92; PMID:12124177; http://dx.doi.org/10.1016/S1535-6108(02)00074-0
  • Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 2013; 13:559-71; PMID:23842646; http://dx.doi.org/10.1038/nrc3563
  • Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res 2012; 18:930-7; PMID:22156549; http://dx.doi.org/10.1158/1078-0432.CCR-10-1613
  • Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD, Rothammer K, Roussel MF, Ihle JN. Stat5ab contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcrabl-induced transformation are independent of stat5. Blood 2000; 96:2277-83; PMID:10979977
  • Foley SB, Hildenbrand Z, Soyombo AA, Wu Y, Magee J, Oravecz-Wilson K, Ross TS. Expression of BCRABL p210 from a knockin allele enhances bone marrow engraftment without inducing neoplasia. Cell Rep 2013; 5:51-60; PMID:24095735; http://dx.doi.org/10.1016/j.celrep.2013.08.037
  • Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE, McDowell EP, Adelsperger J, Frohling S, Huntly BJ, et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12:367-80; PMID:17936561; http://dx.doi.org/10.1016/j.ccr.2007.08.031
  • Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F, Huso D, Small D. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood 2008; 111:3849-58; PMID:18245664; http://dx.doi.org/10.1182/blood-2007-08-109942
  • Loosveld M, Bonnet M, Gon S, Montpellier B, Quilichini B, Navarro JM, Crouzet T, Goujart MA, Chasson L, Morgado E, et al. MYC fails to efficiently shape malignant transformation in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2014; 53:52-66; PMID:24249258; http://dx.doi.org/10.1002/gcc.22117
  • Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcrabl protein. Proc Natl Acad Sci USA 1988; 85:9312-6; PMID:3143116; http://dx.doi.org/10.1073/pnas.85.23.9312
  • Vickers M. Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br J Haematol 1996; 94:1-4; PMID:8757501
  • Michor F. Mathematical models of cancer stem cells. J Clin Oncol 2008; 26:2854-61; PMID:18539964; http://dx.doi.org/10.1200/JCO.2007.15.2421
  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6:587-96; PMID:15607963; http://dx.doi.org/10.1016/j.ccr.2004.10.015
  • Williams RT, Roussel MF, Sherr CJ. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2006; 103:6688-93; PMID:16618932; http://dx.doi.org/10.1073/pnas.0602030103
  • Mullighan CG, Williams RT, Downing JR, Sherr CJ. Failure of CDKN2AB (INK4AB-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. Genes Dev 2008; 22:1411-5; PMID:18519632; http://dx.doi.org/10.1101/gad.1673908
  • Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 2000; 20:7419-26; PMID:11003639; http://dx.doi.org/10.1128/MCB.20.20.7419-7426.2000
  • Castellanos A, Pintado B, Weruaga E, Arevalo R, Lopez A, Orfao A, Sanchez-Garcia I. A BCR-ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 1997; 90:2168-74; PMID:9310467