5,363
Views
116
CrossRef citations to date
0
Altmetric
Reviews

Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

, , , &
Pages 242-255 | Received 06 Dec 2013, Accepted 14 Mar 2014, Published online: 30 Oct 2014

References

  • Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, Fox CS. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging 2013; 6:762-71; PMID:23664720; http://dx.doi.org/10.1016/j.jcmg.2012.11.021
  • Matsuzawa Y. The role of fat topology in the risk of disease. Int J Obes (Lond) 2008; 32(Suppl 7):S83-92; PMID:19136997; http://dx.doi.org/10.1038/ijo.2008.243
  • Matsuzawa Y. White adipose tissue and cardiovascular disease. Best Pract Res Clin Endocrinol Metab 2005; 19:637-47; PMID:16311222; http://dx.doi.org/10.1016/j.beem.2005.07.001
  • Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 2013; 34:463-500; PMID:23550081; http://dx.doi.org/10.1210/er.2012-1041
  • Alvehus M, Burén J, Sjöström M, Goedecke J, Olsson T. The human visceral fat depot has a unique inflammatory profile. Obesity (Silver Spring) 2010; 18:879-83; PMID:20186138; http://dx.doi.org/10.1038/oby.2010.22
  • Matsuzawa Y. Adiponectin: Identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 2005; 6:7-14; PMID:15823491; http://dx.doi.org/10.1016/j.atherosclerosissup.2005.02.003
  • Zhang Y, Zitsman JL, Hou J, Fennoy I, Guo K, Feinberg J, Leibel RL. Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 2014; 22:691-7; PMID:23804589; http://dx.doi.org/10.1002/oby.20528
  • Patel P, Abate N. Body fat distribution and insulin resistance. Nutrients 2013; 5:2019-27; PMID:23739143; http://dx.doi.org/10.3390/nu5062019
  • Wueest S, Schoenle EJ, Konrad D. Depot-specific differences in adipocyte insulin sensitivity in mice are diet- and function-dependent. Adipocyte 2012; 1:153-6; PMID:23700524; http://dx.doi.org/10.4161/adip.19910
  • Joffe YT, Collins M, Goedecke JH. The relationship between dietary fatty acids and inflammatory genes on the obese phenotype and serum lipids. Nutrients 2013; 5:1672-705; PMID:23698162; http://dx.doi.org/10.3390/nu5051672
  • Goedecke JH, Levitt NS, Evans J, Ellman N, Hume DJ, Kotze L, Tootla M, Victor H, Keswell D. The role of adipose tissue in insulin resistance in women of African ancestry. J Obes 2013; 2013:952916; PMID:23401754; http://dx.doi.org/10.1155/2013/952916
  • Billon N, Monteiro MC, Dani C. Developmental origin of adipocytes: new insights into a pending question. Biol Cell 2008; 100:563-75; PMID:18793119; http://dx.doi.org/10.1042/BC20080011
  • Billon N, Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev 2012; 8:55-66; PMID:21365256; http://dx.doi.org/10.1007/s12015-011-9242-x
  • Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: Tracing back the origins of fat. Biochim Biophys Acta 2014;1842:340-51; PMID:23747579; http://dx.doi.org/10.1016/j.bbadis.2013.05.027
  • McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab 2011; 96:E1756-60; PMID:21865361; http://dx.doi.org/10.1210/jc.2011-0615
  • Bidulescu A, Liu J, Hickson DA, Hairston KG, Fox ER, Arnett DK, Sumner AE, Taylor HA, Gibbons GH. Gender differences in the association of visceral and subcutaneous adiposity with adiponectin in African Americans: the Jackson Heart Study. BMC Cardiovasc Disord 2013; 13:9; PMID:23433085; http://dx.doi.org/10.1186/1471-2261-13-9
  • Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM. Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 1997; 5:93-9; PMID:9112243; http://dx.doi.org/10.1002/j.1550-8528.1997.tb00648.x
  • Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Kostense PJ, Yudkin JS, Heine RJ, Nijpels G, Seidell JC. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr 2003; 77:1192-7; PMID:12716671
  • Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 2008; 7:410-20; PMID:18460332; http://dx.doi.org/10.1016/j.cmet.2008.04.004
  • Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, Meigs JB, Sutherland P, D’Agostino RB Sr., O’Donnell CJ, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring) 2010; 18:2191-8; PMID:20339361; http://dx.doi.org/10.1038/oby.2010.59
  • Kishida K, Funahashi T, Matsuzawa Y, Shimomura I. Visceral adiposity as a target for the management of the metabolic syndrome. Ann Med 2012; 44:233-41; PMID:21612331; http://dx.doi.org/10.3109/07853890.2011.564202
  • Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb 2011; 18:629-39; PMID:21737960; http://dx.doi.org/10.5551/jat.7922
  • Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res 1995; 3(Suppl 2):187S-94S; PMID:8581775; http://dx.doi.org/10.1002/j.1550-8528.1995.tb00462.x
  • Shay CM, Carnethon MR, Church TR, Hankinson AL, Chan C, Jacobs DR Jr., Lewis CE, Schreiner PJ, Sternfeld B, Sidney S. Lower extremity fat mass is associated with insulin resistance in overweight and obese individuals: the CARDIA study. Obesity (Silver Spring) 2011; 19:2248-53; PMID:21617639; http://dx.doi.org/10.1038/oby.2011.113
  • Evans J, Goedecke JH, Söderström I, Burén J, Alvehus M, Blomquist C, Jonsson F, Hayes PM, Adams K, Dave JA, et al. Depot- and ethnic-specific differences in the relationship between adipose tissue inflammation and insulin sensitivity. Clin Endocrinol (Oxf) 2011; 74:51-9; PMID:20874774; http://dx.doi.org/10.1111/j.1365-2265.2010.03883.x
  • Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 2010; 34:949-59; PMID:20065965; http://dx.doi.org/10.1038/ijo.2009.286
  • Lovejoy JC, Smith SR, Rood JC. Comparison of regional fat distribution and health risk factors in middle-aged white and African American women: The Healthy Transitions Study. Obes Res 2001; 9:10-6; PMID:11346662; http://dx.doi.org/10.1038/oby.2001.2
  • Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism 1996; 45:1119-24; PMID:8781299; http://dx.doi.org/10.1016/S0026-0495(96)90011-6
  • Goedecke JH, Evans J, Keswell D, Stimson RH, Livingstone DE, Hayes P, Adams K, Dave JA, Victor H, Levitt NS, et al. Reduced gluteal expression of adipogenic and lipogenic genes in Black South African women is associated with obesity-related insulin resistance. J Clin Endocrinol Metab 2011; 96:E2029-33; PMID:21956425; http://dx.doi.org/10.1210/jc.2011-1576
  • Goedecke JH, Levitt NS, Lambert EV, Utzschneider KM, Faulenbach MV, Dave JA, West S, Victor H, Evans J, Olsson T, et al. Differential effects of abdominal adipose tissue distribution on insulin sensitivity in black and white South African women. Obesity (Silver Spring) 2009; 17:1506-12; PMID:19300428; http://dx.doi.org/10.1038/oby.2009.73
  • Tittelbach TJ, Berman DM, Nicklas BJ, Ryan AS, Goldberg AP. Racial differences in adipocyte size and relationship to the metabolic syndrome in obese women. Obes Res 2004; 12:990-8; PMID:15229339; http://dx.doi.org/10.1038/oby.2004.121
  • Staiano AE, Broyles ST, Gupta AK, Katzmarzyk PT. Ethnic and sex differences in visceral, subcutaneous, and total body fat in children and adolescents. Obesity (Silver Spring) 2013;21:1251-5; PMID:23670982; http://dx.doi.org/10.1002/oby.20210
  • Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, Volafova J, Bray GA. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001; 50:425-35; PMID:11288037; http://dx.doi.org/10.1053/meta.2001.21693
  • White UA, Tchoukalova YD. Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta 2014;1842:377-9; PMID:23684841; http://dx.doi.org/10.1016/j.bbadis.2013.05.006
  • da Costa AS, Pires VM, Fontes CM, Mestre Prates JA. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets. BMC Vet Res 2013; 9:118; PMID:23767408; http://dx.doi.org/10.1186/1746-6148-9-118
  • Vasconcelos JT, Sawyer JE, Tedeschi LO, McCollum FT, Greene LW. Effects of different growing diets on performance, carcass characteristics, insulin sensitivity, and accretion of intramuscular and subcutaneous adipose tissue of feedlot cattle. J Anim Sci 2009; 87:1540-7; PMID:19098228; http://dx.doi.org/10.2527/jas.2008-0934
  • Reuter RR, Beck PA. Southern Section Interdisciplinary Beef Cattle Symposium: Carryover effects of stocker cattle systems on feedlot performance and carcass characteristics. J Anim Sci 2013; 91:508-15; PMID:23048147; http://dx.doi.org/10.2527/jas.2012-5527
  • Mello AS Jr., Jenschke BE, Senaratne LS, Carr TP, Erickson GE, Calkins CR. Effects of feeding modified distillers grains plus solubles on marbling attributes, proximate composition, and fatty acid profile of beef. J Anim Sci 2012; 90:4634-40; PMID:22859752; http://dx.doi.org/10.2527/jas.2010-3240
  • Schmidt JR, Miller MC, Andrae JG, Ellis SE, Duckett SK. Effect of summer forage species grazed during finishing on animal performance, carcass quality, and meat quality. J Anim Sci 2013; 91:4451-61; PMID:23825343; http://dx.doi.org/10.2527/jas.2012-5405
  • Sharman ED, Lancaster PA, Krehbiel CR, Hilton GG, Stein DR, Desilva U, Horn GW. Effects of starch- vs. fiber-based energy supplements during winter grazing on partitioning of fat among depots and adipose tissue gene expression in growing cattle and final carcass characteristics. J Anim Sci 2013; 91:2264-77; PMID:23463572; http://dx.doi.org/10.2527/jas.2012-5284
  • Du M, Yin J, Zhu MJ. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci 2010; 86:103-9; PMID:20510530; http://dx.doi.org/10.1016/j.meatsci.2010.04.027
  • Stern HM, Brown AM, Hauschka SD. Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 1995; 121:3675-86; PMID:8582280
  • Cossu G, Borello U. Wnt signaling and the activation of myogenesis in mammals. EMBO J 1999; 18:6867-72; PMID:10601008; http://dx.doi.org/10.1093/emboj/18.24.6867
  • Du M, Zhao JX, Yan X, Huang Y, Nicodemus LV, Yue W, McCormick RJ, Zhu MJ. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J Anim Sci 2011; 89:583-90; PMID:20852073; http://dx.doi.org/10.2527/jas.2010-3386
  • Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164-76; PMID:16730693; http://dx.doi.org/10.1016/j.ydbio.2006.04.449
  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460:1154-8; PMID:19641492; http://dx.doi.org/10.1038/nature08262
  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454:1000-4; PMID:18719589; http://dx.doi.org/10.1038/nature07221
  • Taga H, Chilliard Y, Picard B, Zingaretti MC, Bonnet M. Foetal bovine intermuscular adipose tissue exhibits histological and metabolic features of brown and white adipocytes during the last third of pregnancy. Animal 2012; 6:641-9; PMID:22436281; http://dx.doi.org/10.1017/S1751731111001716
  • Taga H, Bonnet M, Picard B, Zingaretti MC, Cassar-Malek I, Cinti S, Chilliard Y. Adipocyte metabolism and cellularity are related to differences in adipose tissue maturity between Holstein and Charolais or Blond d’Aquitaine fetuses. J Anim Sci 2011; 89:711-21; PMID:21036936; http://dx.doi.org/10.2527/jas.2010-3234
  • MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002; 13:5-11; PMID:11750856; http://dx.doi.org/10.1016/S1043-2760(01)00517-3
  • Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM. Transcriptional control of preadipocyte determination by Zfp423. Nature 2010; 464:619-23; PMID:20200519; http://dx.doi.org/10.1038/nature08816
  • Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmick DC, Ye L, Cinti S, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 2012; 15:230-9; PMID:22326224; http://dx.doi.org/10.1016/j.cmet.2012.01.010
  • Huang Y, Das AK, Yang QY, Zhu MJ, Du M. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLoS One 2012; 7:e47496; PMID:23071815; http://dx.doi.org/10.1371/journal.pone.0047496
  • Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 2007; 56:472-92; PMID:17317490; http://dx.doi.org/10.1016/j.jaad.2006.06.022
  • Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001; 27:1-9; PMID:11463572; http://dx.doi.org/10.1677/jme.0.0270001
  • Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87:377-89; PMID:8898192; http://dx.doi.org/10.1016/S0092-8674(00)81359-8
  • Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7:885-96; PMID:17139329; http://dx.doi.org/10.1038/nrm2066
  • Brun RP, Spiegelman BM. PPAR gamma and the molecular control of adipogenesis. J Endocrinol 1997; 155:217-8; PMID:9415052; http://dx.doi.org/10.1677/joe.0.1550217
  • Allen CE, Beitz DC, Cramer DA, Kauffman RG. Biology of fat in meat animals. Madison: University of Wisconsin-Madison1976 Contract No.: No. 234.
  • Haugebak CD, Hedrick HB, Asplund JM. Relationship between extramuscular adipose tissue lipoprotein lipase activity and intramuscular lipid deposition in fattening lambs. J Anim Sci 1974; 39:1026-31; PMID:4443312
  • Robelin J. Growth of adipose tissues in cattle; partitioning between depots, chemical composition and cellularity. A review. Livest Prod Sci 1986; 14:349-64; http://dx.doi.org/10.1016/0301-6226(86)90014-X
  • Kouba M, Sellier P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig. Meat Sci 2011; 88:213-20; PMID:21303725; http://dx.doi.org/10.1016/j.meatsci.2011.01.003
  • Cianzio DS, Topel DG, Whitehurst GB, Beitz DC, Self HL. Adipose tissue growth and cellularity: changes in bovine adipocyte size and number. J Anim Sci 1985; 60:970-6; PMID:3988658
  • Kouba M, Bonneau M, Noblet J. Relative development of subcutaneous, intermuscular, and kidney fat in growing pigs with different body compositions. J Anim Sci 1999; 77:622-9; PMID:10229357
  • Gispert M, Font I Furnols M, Gil M, Velarde A, Diestre A, Carrión D, Sosnicki AA, Plastow GS. Relationships between carcass quality parameters and genetic types. Meat Sci 2007; 77:397-404; PMID:22061793; http://dx.doi.org/10.1016/j.meatsci.2007.04.006
  • Eggert JM, Grant AL, Schinckel AP. Factors Affecting Fat Distribution in Pork Carcasses. Prof Anim Sci 2007; 23:42-53
  • Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M. Effects of fatty acids on meat quality: a review. Meat Sci 2004; 66:21-32; PMID:22063928; http://dx.doi.org/10.1016/S0309-1740(03)00022-6
  • Hoque MA, Suzuki K, Kadowaki H, Shibata T, Oikawa T. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs. J Anim Breed Genet 2007; 124:108-16; PMID:17550351; http://dx.doi.org/10.1111/j.1439-0388.2007.00650.x
  • Hoque MA, Katoh K, Suzuki K. Genetic associations of residual feed intake with serum insulin-like growth factor-I and leptin concentrations, meat quality, and carcass cross sectional fat area ratios in Duroc pigs. J Anim Sci 2009; 87:3069-75; PMID:19465494; http://dx.doi.org/10.2527/jas.2008-1268
  • Suzuki K, Inomata K, Katoh K, Kadowaki H, Shibata T. Genetic correlations among carcass cross-sectional fat area ratios, production traits, intramuscular fat, and serum leptin concentration in Duroc pigs. J Anim Sci 2009; 87:2209-15; PMID:19329483; http://dx.doi.org/10.2527/jas.2008-0866
  • Bergen R, Miller SP, Wilton JW, Mandell IB. Genetic correlations between live yearling bull and steer carcass traits adjusted to different slaughter end points. 2. Carcass fat partitioning. J Anim Sci 2006; 84:558-66; PMID:16478947
  • Davoli R, Gandolfi G, Braglia S, Comella M, Zambonelli P, Buttazzoni L, Russo V. New SNP of the porcine perilipin 2 (PLIN2) gene, association with carcass traits and expression analysis in skeletal muscle. Mol Biol Rep 2011; 38:1575-83; PMID:20842447; http://dx.doi.org/10.1007/s11033-010-0266-0
  • Zhou C, Zhang J, Ma J, Jiang A, Tang G, Mai M, Zhu L, Bai L, Li M, Li X. Gene expression profiling reveals distinct features of various porcine adipose tissues. Lipids Health Dis 2013; 12:75; PMID:23705929; http://dx.doi.org/10.1186/1476-511X-12-75
  • Li M, Wu H, Wang T, Xia Y, Jin L, Jiang A, Zhu L, Chen L, Li R, Li X. Co-methylated genes in different adipose depots of pig are associated with metabolic, inflammatory and immune processes. Int J Biol Sci 2012; 8:831-7; PMID:22719223; http://dx.doi.org/10.7150/ijbs.4493
  • Ma J, Yu S, Wang F, Bai L, Xiao J, Jiang Y, Chen L, Wang J, Jiang A, Li M, et al. MicroRNA Transcriptomes Relate Intermuscular Adipose Tissue to Metabolic Risk. Int J Mol Sci 2013; 14:8611-24; PMID:23609494; http://dx.doi.org/10.3390/ijms14048611
  • Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev 2008; 29:777-822; PMID:18971485; http://dx.doi.org/10.1210/er.2008-0024
  • Vettor R, Milan G, Franzin C, Sanna M, De Coppi P, Rizzuto R, Federspil G. The origin of intermuscular adipose tissue and its pathophysiological implications. Am J Physiol Endocrinol Metab 2009; 297:E987-98; PMID:19738037; http://dx.doi.org/10.1152/ajpendo.00229.2009
  • Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 2012; 23:391-8; PMID:22721584; http://dx.doi.org/10.1016/j.tem.2012.05.009
  • Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, et al.; Health, Aging, and Body. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 2009; 90:1579-85; PMID:19864405; http://dx.doi.org/10.3945/ajcn.2009.28047
  • Manini TM, Clark BC, Nalls MA, Goodpaster BH, Ploutz-Snyder LL, Harris TB. Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am J Clin Nutr 2007; 85:377-84; PMID:17284732
  • Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 2010; 14:362-6; PMID:20424803; http://dx.doi.org/10.1007/s12603-010-0081-2
  • Miljkovic I, Yerges LM, Li H, Gordon CL, Goodpaster BH, Kuller LH, Nestlerode CS, Bunker CH, Patrick AL, Wheeler VW, et al. Association of the CPT1B gene with skeletal muscle fat infiltration in Afro-Caribbean men. Obesity (Silver Spring) 2009; 17:1396-401; PMID:19553926
  • Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res 2012; 2012:172957; PMID:22666591; http://dx.doi.org/10.1155/2012/172957
  • Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol (1985) 2008; 105:1498-503; PMID:18818386; http://dx.doi.org/10.1152/japplphysiol.90425.2008
  • Miljkovic I, Cauley JA, Petit MA, Ensrud KE, Strotmeyer E, Sheu Y, Gordon CL, Goodpaster BH, Bunker CH, Patrick AL, et al.; Osteoporotic Fractures in Men Research Group; Tobago Health Studies Research Group. Greater adipose tissue infiltration in skeletal muscle among older men of African ancestry. J Clin Endocrinol Metab 2009; 94:2735-42; PMID:19454588; http://dx.doi.org/10.1210/jc.2008-2541
  • Li WZ, Zhao SM, Huang Y, Yang MH, Pan HB, Zhang X, Ge CR, Gao SZ. Expression of lipogenic genes during porcine intramuscular preadipocyte differentiation. Res Vet Sci 2012; 93:1190-4; PMID:22795880; http://dx.doi.org/10.1016/j.rvsc.2012.06.006
  • Boettcher M, Machann J, Stefan N, Thamer C, Häring HU, Claussen CD, Fritsche A, Schick F. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. J Magn Reson Imaging 2009; 29:1340-5; PMID:19422021; http://dx.doi.org/10.1002/jmri.21754
  • Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ. Meat Science and Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2013; 91:1419-27; PMID:23100595; http://dx.doi.org/10.2527/jas.2012-5670
  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2010; 12:143-52; PMID:20081842; http://dx.doi.org/10.1038/ncb2014
  • Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 2011; 124:3654-64; PMID:22045730; http://dx.doi.org/10.1242/jcs.086629
  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010; 12:153-63; PMID:20081841; http://dx.doi.org/10.1038/ncb2015
  • Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol 2006; 575:241-50; PMID:16763001; http://dx.doi.org/10.1113/jphysiol.2006.112110
  • Ma J, Yang J, Zhou L, Zhang Z, Ma H, Xie X, Zhang F, Xiong X, Cui L, Yang H, et al. Genome-wide association study of meat quality traits in a White Duroc×Erhualian F2 intercross and Chinese Sutai pigs. PLoS One 2013; 8:e64047; PMID:23724019; http://dx.doi.org/10.1371/journal.pone.0064047
  • Yan X, Huang Y, Zhao JX, Long NM, Uthlaut AB, Zhu MJ, Ford SP, Nathanielsz PW, Du M. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol Reprod 2011; 85:172-8; PMID:21349823; http://dx.doi.org/10.1095/biolreprod.110.089649
  • Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW, Du M. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology 2010; 151:380-7; PMID:19887565; http://dx.doi.org/10.1210/en.2009-0849
  • Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR, Xiao Y, Hess BW, Ford SP, Nathanielsz PW, et al. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J Physiol 2008; 586:2651-64; PMID:18372306; http://dx.doi.org/10.1113/jphysiol.2007.149633
  • Duarte MS, Paulino PV, Das AK, Wei S, Serão NV, Fu X, Harris SM, Dodson MV, Du M. Enhancement of adipogenesis and fibrogenesis in skeletal muscle of Wagyu compared with Angus cattle. J Anim Sci 2013; 91:2938-46; PMID:23508025; http://dx.doi.org/10.2527/jas.2012-5892
  • Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood) 2010; 235:1185-93; PMID:20864461; http://dx.doi.org/10.1258/ebm.2010.010063
  • Hausman GJ, Poulos S. Recruitment and differentiation of intramuscular preadipocytes in stromal-vascular cell cultures derived from neonatal pig semitendinosus muscles. J Anim Sci 2004; 82:429-37; PMID:14974540
  • Hausman GJ, Poulos SP. A method to establish co-cultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles. J Anim Sci 2005; 83:1010-6; PMID:15827245
  • Guo Y, Mo D, Zhang Y, Zhang Y, Cong P, Xiao S, He Z, Liu X, Chen Y. MicroRNAome comparison between intramuscular and subcutaneous vascular stem cell adipogenesis. PLoS One 2012; 7:e45410; PMID:23028990; http://dx.doi.org/10.1371/journal.pone.0045410
  • Grant AC, Ortiz-Colón G, Doumit ME, Tempelman RJ, Buskirk DD. Differentiation of bovine intramuscular and subcutaneous stromal-vascular cells exposed to dexamethasone and troglitazone. J Anim Sci 2008; 86:2531-8; PMID:18539836; http://dx.doi.org/10.2527/jas.2008-0860
  • Poulos SP, Hausman GJ. A comparison of thiazolidinedione-induced adipogenesis and myogenesis in stromal-vascular cells from subcutaneous adipose tissue or semitendinosus muscle of postnatal pigs. J Anim Sci 2006; 84:1076-82; PMID:16612009
  • Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 2010; 88(Suppl):E51-60; PMID:19717774; http://dx.doi.org/10.2527/jas.2009-2311
  • Hausman GJ, Poulos SP. Adipose tissue development in extramuscular and intramuscular depots. Applied Muscle Biology and Meat Science. Boca Raton, FL: CRC Press; 2009. p. 67-81.
  • Allen CE. Cellularity of adipose tissue in meat animals. Fed Proc 1976; 35:2302-7; PMID:782925
  • Gardan D, Gondret F, Louveau I. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am J Physiol Endocrinol Metab 2006; 291:E372-80; PMID:16705057; http://dx.doi.org/10.1152/ajpendo.00482.2005
  • Schwab CR, Baas TJ, Stalder KJ, Mabry JW. Deposition rates and accretion patterns of intramuscular fat, loin muscle area, and backfat of Duroc pigs sired by boars from two time periods. J Anim Sci 2007; 85:1540-6; PMID:17296776; http://dx.doi.org/10.2527/jas.2006-343
  • Pannier L, Pethick DW, Geesink GH, Ball AJ, Jacob RH, Gardner GE. Intramuscular fat in the longissimus muscle is reduced in lambs from sires selected for leanness. Meat Sci 2014; 96:1068-75; PMID:23816480; http://dx.doi.org/10.1016/j.meatsci.2013.06.014
  • Castro Bulle FC, Paulino PV, Sanches AC, Sainz RD. Growth, carcass quality, and protein and energy metabolism in beef cattle with different growth potentials and residual feed intakes. J Anim Sci 2007; 85:928-36; PMID:17178805; http://dx.doi.org/10.2527/jas.2006-373
  • Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 2010; 4:303-19; PMID:22443885; http://dx.doi.org/10.1017/S1751731109991091
  • Pethick DW, Harper GS, Oddy VH. Growth, development and nutritional manipulation of marbling in cattle: a review. Aust J Exp Agric 2004; 44:705-15; http://dx.doi.org/10.1071/EA02165
  • Harper GS, Pethick DW. How might marbling begin? Aust J Exp Agric 2004; 44:653-62; http://dx.doi.org/10.1071/EA02114
  • Pickworth CL, Loerch SC, Fluharty FL. Restriction of vitamin A and D in beef cattle finishing diets on feedlot performance and adipose accretion. J Anim Sci 2012; 90:1866-78; PMID:22178850; http://dx.doi.org/10.2527/jas.2010-3590
  • Gorocica-Buenfil MA, Fluharty FL, Reynolds CK, Loerch SC. Effect of dietary vitamin A concentration and roasted soybean inclusion on marbling, adipose cellularity, and fatty acid composition of beef. J Anim Sci 2007; 85:2230-42; PMID:17468427; http://dx.doi.org/10.2527/jas.2006-780
  • Essén-Gustavsson B, Karlsson A, Lundström K, Enfält AC. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Sci 1994; 38:269-77; PMID:22059664; http://dx.doi.org/10.1016/0309-1740(94)90116-3
  • Schoonmaker JP, Fluharty FL, Loerch SC. Effect of source and amount of energy and rate of growth in the growing phase on adipocyte cellularity and lipogenic enzyme activity in the intramuscular and subcutaneous fat depots of Holstein steers. J Anim Sci 2004; 82:137-48; PMID:14753357
  • Heyer A, Lebret B. Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J Anim Sci 2007; 85:769-78; PMID:17296780; http://dx.doi.org/10.2527/jas.2006-164
  • Bee G, Calderini M, Biolley C, Guex G, Herzog W, Lindemann MD. Changes in the histochemical properties and meat quality traits of porcine muscles during the growing-finishing period as affected by feed restriction, slaughter age, or slaughter weight. J Anim Sci 2007; 85:1030-45; PMID:17178814; http://dx.doi.org/10.2527/jas.2006-496
  • Gondret F, Lebret B. Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. J Anim Sci 2002; 80:3184-93; PMID:12542159
  • Guillerm-Regost C, Louveau I, Sébert SP, Damon M, Champ MM, Gondret F. Cellular and biochemical features of skeletal muscle in obese Yucatan minipigs. Obesity (Silver Spring) 2006; 14:1700-7; PMID:17062798; http://dx.doi.org/10.1038/oby.2006.195
  • He ML, Sharma R, Mir PS, Okine E, Dodson MV. Feed withdrawal abate regimens lipodystrophy and metabolic syndrome symptoms, such as glucose tolerance, are associated with the diameter of retroperitoneal adipocytes in rats. Nutr Res 2010; 30:125-33; PMID:20226998; http://dx.doi.org/10.1016/j.nutres.2009.09.009
  • Mir PS, He ML, Schwartzkopf-Genswein K, Sharma R, Brown FA, Travis G, et al. Effect of supplementation of beef steer diets with oil containing n6 and n3 fatty acids and 48 h feed withdrawal treatments on plasma hormone profiles and adipose tissue cellularity. Livest Sci 2012; 146:140-8; http://dx.doi.org/10.1016/j.livsci.2012.03.001
  • Sørensen MT, Oksbjerg N, Agergaard N, Petersen JS. Tissue deposition rates in relation to muscle fibre and fat cell characteristics in lean female pigs (Sus scrofa) following treatment with porcine growth hormone (pGH). Comp Biochem Physiol A Physiol 1996; 113:91-6; PMID:8624908; http://dx.doi.org/10.1016/0300-9629(95)02038-1
  • Gondret F, Lefaucheur L, Juin H, Louveau I, Lebret B. Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs. J Anim Sci 2006; 84:93-103; PMID:16361495
  • Harbison SA, Goll DE, Parrish FC Jr., Wang V, Kline EA. Muscle growth in two genetically different lines of swine. Growth 1976; 40:253-83; PMID:976769
  • Seideman SC, Crouse JD, Mersmann HJ. Carcass, muscle and meat characteristics of lean and obese pigs. J Anim Sci 1989; 67:2950-5; PMID:2592282
  • Mourot J, Kouba M. Development of intra- and intermuscular adipose tissue in growing large white and Meishan pigs. Reprod Nutr Dev 1999; 39:125-32; PMID:10222503; http://dx.doi.org/10.1051/rnd:19990145
  • Clark SL, Wander RC, Hu CY. The effect of porcine somatotropin supplementation in pigs on the lipid profile of subcutaneous and intermuscular adipose tissue and longissimus muscle. J Anim Sci 1992; 70:3435-42; PMID:1459904.
  • Poulos S, Hausman G. Intramuscular adipocytes-potential to prevent lipotoxicity in skeletal muscle. Adipocytes. 2005; 1:79-94
  • Doran O, Moule SK, Teye GA, Whittington FM, Hallett KG, Wood JD. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: relationship with intramuscular lipid formation. Br J Nutr 2006; 95:609-17; PMID:16512947; http://dx.doi.org/10.1079/BJN20051526
  • May SG, Savell JW, Lunt DK, Wilson JJ, Laurenz JC, Smith SB. Evidence for preadipocyte proliferation during culture of subcutaneous and intramuscular adipose tissues from Angus and Wagyu crossbred steers. J Anim Sci 1994; 72:3110-7; PMID:7759359
  • Clark BA, Alloosh M, Wenzel JW, Sturek M, Kostrominova TY. Effect of diet-induced obesity and metabolic syndrome on skeletal muscles of Ossabaw miniature swine. Am J Physiol Endocrinol Metab 2011; 300:E848-57; PMID:21304063; http://dx.doi.org/10.1152/ajpendo.00534.2010
  • Reiter SS, Halsey CHC, Stronach BM, Bartosh JL, Owsley WF, Bergen WG. Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain Pigs. Comp Biochem Physiol Part D Genomics Proteomics 2007; 2:200-6; PMID:20483293; http://dx.doi.org/10.1016/j.cbd.2007.04.008
  • Gandolfi G, Mazzoni M, Zambonelli P, Lalatta-Costerbosa G, Tronca A, Russo V, Davoli R. Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Sci 2011; 88:631-7; PMID:21420243; http://dx.doi.org/10.1016/j.meatsci.2011.02.020
  • Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, et al. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 2009; 87:1218-46; PMID:18849378; http://dx.doi.org/10.2527/jas.2008-1427
  • Dodson MV, Jiang Z, Chen J, Hausman GJ, Guan LL, Novakofski J, Thompson DP, Lorenzen CL, Fernyhough ME, Mir PS, et al. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci 2010; 75:R1-8; PMID:20492190; http://dx.doi.org/10.1111/j.1750-3841.2009.01396.x
  • Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S. Molecular Heterogeneities of Adipose Depots-Poten-tial Effects on Adipose-Muscle Cross-Talk in Humans, Mice and Farm Animals. J Genomics 2014; 2:31-44; http://dx.doi.org/10.7150/jgen.5260
  • Dodson MV, Mir PS, Hausman GJ, Guan LL, Du M, Jiang Z, Fernyhough ME, Bergen WG. Obesity, metabolic syndrome, and adipocytes. J Lipids 2011; 2011:721686; PMID:21811683; http://dx.doi.org/10.1155/2011/721686
  • Gao SZ, Zhao SM. Physiology, affecting factors and strategies for control of pig meat intramuscular fat. Recent Pat Food Nutr Agric 2009; 1:59-74; PMID:20653527
  • Jiang Z, Michal JJ, Tobey DJ, Daniels TF, Rule DC, Macneil MD. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle. Int J Biol Sci 2008; 4:345-51; PMID:18825276; http://dx.doi.org/10.7150/ijbs.4.345
  • Wang W, Xue W, Jin B, Zhang X, Ma F, Xu X. Candidate gene expression affects intramuscular fat content and fatty acid composition in pigs. J Appl Genet 2013; 54:113-8; PMID:23275256; http://dx.doi.org/10.1007/s13353-012-0131-z
  • Muoio DM, Koves TR. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol Nutr Metab 2007; 32:874-83; PMID:18059612; http://dx.doi.org/10.1139/H07-083
  • Cui HX, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics 2012; 13:213; PMID:22646994; http://dx.doi.org/10.1186/1471-2164-13-213
  • Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, Wang Y, Peng J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One 2013; 8:e53181; PMID:23301040; http://dx.doi.org/10.1371/journal.pone.0053181
  • Perera RJ, Marcusson EG, Koo S, Kang X, Kim Y, White N, Dean NM. Identification of novel PPARgamma target genes in primary human adipocytes. Gene 2006; 369:90-9; PMID:16380219; http://dx.doi.org/10.1016/j.gene.2005.10.021
  • Wang Q, Ji C, Huang J, Yang F, Zhang H, Liu L, Yin J. The mRNA of lipin1 and its isoforms are differently expressed in the longissimus dorsi muscle of obese and lean pigs. Mol Biol Rep 2011; 38:319-25; PMID:20358298; http://dx.doi.org/10.1007/s11033-010-0110-6
  • Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, van Beurden D, Schaart G, de Baets MH, Verheyen FK, et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012; 61:2679-90; PMID:22807032; http://dx.doi.org/10.2337/db11-1402
  • Keady SM, Kenny DA, Ohlendieck K, Doyle S, Keane MG, Waters SM. Proteomic profiling of bovine M. longissimus lumborum from Crossbred Aberdeen Angus and Belgian Blue sired steers varying in genetic merit for carcass weight. J Anim Sci 2013; 91:654-65; PMID:23307841; http://dx.doi.org/10.2527/jas.2012-5850
  • Huuskonen A, Lappalainen J, Oksala N, Santtila M, Häkkinen K, Kyröläinen H, Atalay M. Common genetic variation in the IGF1 associates with maximal force output. Med Sci Sports Exerc 2011; 43:2368-74; PMID:21552154; http://dx.doi.org/10.1249/MSS.0b013e3182220179
  • Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M, Estellé J, Ibáñez-Escriche N, Fernández AI, Pérez-Enciso M, et al. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics 2012; 13:547; PMID:23051667; http://dx.doi.org/10.1186/1471-2164-13-547
  • Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147:5340-51; PMID:16873530; http://dx.doi.org/10.1210/en.2006-0536
  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889-94; PMID:17434869; http://dx.doi.org/10.1126/science.1141634
  • Fan B, Du ZQ, Rothschild MF. The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim Biotechnol 2009; 20:58-70; PMID:19370455; http://dx.doi.org/10.1080/10495390902800792
  • Michaud EJ, Mynatt RL, Miltenberger RJ, Klebig ML, Wilkinson JE, Zemel MB, Wilkison WO, Woychik RP. Role of the agouti gene in obesity. J Endocrinol 1997; 155:207-9; PMID:9415049; http://dx.doi.org/10.1677/joe.0.1550207
  • Yabuuchi M, Bando K, Hiramatsu M, Takahashi S, Takeuchi S. Local agouti signaling protein/melanocortin signaling system that possibly regulates lipid metabolism in adipose tissues of chickens. J Poult Sci. 2010;1002010046.
  • Albrecht E, Komolka K, Kuzinski J, Maak S. Agouti revisited: transcript quantification of the ASIP gene in bovine tissues related to protein expression and localization. PLoS One 2012; 7:e35282; PMID:22530003; http://dx.doi.org/10.1371/journal.pone.0035282
  • Bong JJ, Cho KK, Baik M. Comparison of gene expression profiling between bovine subcutaneous and intramuscular adipose tissues by serial analysis of gene expression. Cell Biol Int 2010; 34:125-33; PMID:19947932
  • Kim NK, Park HR, Lee HC, Yoon D, Son ES, Kim YS, Kim SR, Kim OH, Lee CS. Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mamm Genome 2010; 21:307-19; PMID:20532784; http://dx.doi.org/10.1007/s00335-010-9264-8
  • Lee SH, Gondro C, van der Werf J, Kim NK, Lim DJ, Park EW, Oh SJ, Gibson JP, Thompson JM. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 2010; 11:623; PMID:21062493; http://dx.doi.org/10.1186/1471-2164-11-623
  • Wang YH, Bower NI, Reverter A, Tan SH, De Jager N, Wang R, McWilliam SM, Cafe LM, Greenwood PL, Lehnert SA. Gene expression patterns during intramuscular fat development in cattle. J Anim Sci 2009; 87:119-30; PMID:18820161; http://dx.doi.org/10.2527/jas.2008-1082
  • Albrecht E, Gotoh T, Ebara F, Wegner J, Maak S. Technical note: Determination of cell-specific gene expression in bovine skeletal muscle tissue using laser microdissection and reverse-transcription quantitative polymerase chain reaction. J Anim Sci 2011; 89:4339-43; PMID:21821804; http://dx.doi.org/10.2527/jas.2011-4039
  • Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, Chen J, Zhang L, Hu Y, Wen J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One 2013; 8:e61172; PMID:23637794; http://dx.doi.org/10.1371/journal.pone.0061172
  • Ramayo-Caldas Y, Mercadé A, Castelló A, Yang B, Rodríguez C, Alves E, Díaz I, Ibáñez-Escriche N, Noguera JL, Pérez-Enciso M, et al. Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross. J Anim Sci 2012; 90:2883-93; PMID:22785162; http://dx.doi.org/10.2527/jas.2011-4900
  • Murgiano L, D’Alessandro A, Egidi MG, Crisà A, Prosperini G, Timperio AM, Valentini A, Zolla L. Proteomics and transcriptomics investigation on longissimus muscles in Large White and Casertana pig breeds. J Proteome Res 2010; 9:6450-66; PMID:20968299; http://dx.doi.org/10.1021/pr100693h
  • Rajesh RV, Heo GN, Park MR, Nam JS, Kim NK, Yoon D, Kim TH, Lee HJ. Proteomic analysis of bovine omental, subcutaneous and intramuscular preadipocytes during in vitro adipogenic differentiation. Comp Biochem Physiol Part D Genomics Proteomics 2010; 5:234-44; PMID:20656571; http://dx.doi.org/10.1016/j.cbd.2010.06.004
  • Gondret F, Guitton N, Guillerm-Regost C, Louveau I. Regional differences in porcine adipocytes isolated from skeletal muscle and adipose tissues as identified by a proteomic approach. J Anim Sci 2008; 86:2115-25; PMID:18310487; http://dx.doi.org/10.2527/jas.2007-0750
  • Cafe LM, McIntyre BL, Robinson DL, Geesink GH, Barendse W, Greenwood PL. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 1. Growth, efficiency, temperament, and carcass characteristics. J Anim Sci 2010; 88:3047-58; PMID:20525933; http://dx.doi.org/10.2527/jas.2009-2678
  • Wu XX, Yang ZP, Shi XK, Li JY, Ji DJ, Mao YJ, Chang LL, Gao HJ. Association of SCD1 and DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle and their distribution in eight Chinese cattle breeds. Mol Biol Rep 2012; 39:1065-71; PMID:21607624; http://dx.doi.org/10.1007/s11033-011-0832-0
  • Wu Y, Kim JY, Zhou S, Smas CM. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues. BMC Genomics 2008; 9:397; PMID:18721461; http://dx.doi.org/10.1186/1471-2164-9-397
  • Uleberg E, Widerøe IS, Grindflek E, Szyda J, Lien S, Meuwissen TH. Fine mapping of a QTL for intramuscular fat on porcine chromosome 6 using combined linkage and linkage disequilibrium mapping. J Anim Breed Genet 2005; 122:1-6; PMID:16130482; http://dx.doi.org/10.1111/j.1439-0388.2004.00496.x
  • Edwards DB, Ernst CW, Raney NE, Doumit ME, Hoge MD, Bates RO. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. J Anim Sci 2008; 86:254-66; PMID:17965326; http://dx.doi.org/10.2527/jas.2006-626
  • Quintanilla R, Pena RN, Gallardo D, Cánovas A, Ramírez O, Díaz I, Noguera JL, Amills M. Porcine intramuscular fat content and composition are regulated by quantitative trait loci with muscle-specific effects. J Anim Sci 2011; 89:2963-71; PMID:21571897; http://dx.doi.org/10.2527/jas.2011-3974
  • Wang H, Xiong K, Sun W, Fu Y, Jiang Z, Yu D, Liu H, Chen J. Two completely linked polymorphisms in the PPARG transcriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs. Anim Genet 2013; 44:458-62; PMID:23402337; http://dx.doi.org/10.1111/age.12025
  • Barendse W. Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle. PLoS One 2011; 6:e29601; PMID:22216329; http://dx.doi.org/10.1371/journal.pone.0029601
  • Bolormaa S, Neto LR, Zhang YD, Bunch RJ, Harrison BE, Goddard ME, Barendse W. A genome-wide association study of meat and carcass traits in Australian cattle. J Anim Sci 2011; 89:2297-309; PMID:21421834; http://dx.doi.org/10.2527/jas.2010-3138
  • Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58:1050-7; PMID:19188425; http://dx.doi.org/10.2337/db08-1299
  • Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276:2348-58; PMID:19348006; http://dx.doi.org/10.1111/j.1742-4658.2009.06967.x
  • Jin W, Grant JR, Stothard P, Moore SS, Guan LL. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mol Biol 2009; 10:90; PMID:19758457; http://dx.doi.org/10.1186/1471-2199-10-90
  • Jin W, Dodson MV, Moore SS, Basarab JA, Guan LL. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Mol Biol 2010; 11:29; PMID:20423511; http://dx.doi.org/10.1186/1471-2199-11-29
  • Wang H, Zheng Y, Wang G, Li H. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol Biosyst 2013; 9:2154-62; PMID:23728155; http://dx.doi.org/10.1039/c3mb70084d
  • Romao JM, Jin W, He M, McAllister T, Guan LL. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One 2012; 7:e40605; PMID:22815773; http://dx.doi.org/10.1371/journal.pone.0040605
  • Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J 2011; 278:1598-609; PMID:21395977; http://dx.doi.org/10.1111/j.1742-4658.2011.08089.x
  • Albu JB, Kovera AJ, Allen L, Wainwright M, Berk E, Raja-Khan N, Janumala I, Burkey B, Heshka S, Gallagher D. Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women. Am J Clin Nutr 2005; 82:1210-7; PMID:16332653
  • Tsintzas K, Chokkalingam K, Jewell K, Norton L, Macdonald IA, Constantin-Teodosiu D. Elevated free fatty acids attenuate the insulin-induced suppression of PDK4 gene expression in human skeletal muscle: potential role of intramuscular long-chain acyl-coenzyme A. J Clin Endocrinol Metab 2007; 92:3967-72; PMID:17652214; http://dx.doi.org/10.1210/jc.2007-1104
  • Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39:724-6; PMID:17496892; http://dx.doi.org/10.1038/ng2048
  • Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3:e115; PMID:17658951; http://dx.doi.org/10.1371/journal.pgen.0030115
  • Kang ES, Park SE, Han SJ, Kim SH, Nam CM, Ahn CW, Cha BS, Kim KS, Lee HC. LPIN1 genetic variation is associated with rosiglitazone response in type 2 diabetic patients. Mol Genet Metab 2008; 95:96-100; PMID:18693052; http://dx.doi.org/10.1016/j.ymgme.2008.06.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.