829
Views
5
CrossRef citations to date
0
Altmetric
Review

Helix control in polymers

Case of peptide nucleic acids (PNAs)

, &
Pages 31-44 | Published online: 01 Apr 2012

References

  • Cantor CR, Schimmel PR. The conformation of biological macromolecules. Biophysical Chemistry, Part I. New York: W. H. Freeman and Co, 1980.
  • Ellison MJ, Kelleher RJ 3rd, Wang AH-J, Habener JF, Rich A. Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc Natl Acad Sci U S A 1985; 82:8320 - 4; http://dx.doi.org/10.1073/pnas.82.24.8320; PMID: 3866225
  • Tobias DJ, Brooks CL III. Thermodynamics and mechanism of α-helix iniatiation in alanine and valine peptides. Biochem 1991; 30:6059 - 70; http://dx.doi.org/10.1021/bi00238a033
  • Ho PS, Ellison MJ, Quigley GJ, Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 1986; 5:2737 - 44; PMID: 3780676
  • Green MM, Jain V. Homochirality in life: two equal runners, one tripped. Orig Life Evol Biosph 2010; 40:111 - 8; http://dx.doi.org/10.1007/s11084-009-9180-7; PMID: 19911302
  • Kreil G. D-amino acids in animal peptides. Annu Rev Biochem 1997; 66:337 - 45; http://dx.doi.org/10.1146/annurev.biochem.66.1.337; PMID: 9242910
  • Fujii N, Momose Y, Ishii N, Takita M, Akaboshi M, Kodama M. The mechanisms of simultaneous stereoinversion, racemization, and isomerization at specific aspartyl residues of aged lens proteins. Mech Ageing Dev 1999; 107:347 - 58; http://dx.doi.org/10.1016/S0047-6374(98)00129-8; PMID: 10360687
  • Lorenzi GP, Jackle H, Tomasic L, Rizzo V, Pedone C. Nature and relative stability of monomeric and dimeric species of the D,L-alternating octapeptide Boc-(L-Val-D-Val)4-OMe in cyclohexane or chloroform solution. J Am Chem Soc 1982; 104:1728 - 33; http://dx.doi.org/10.1021/ja00370a047
  • Lotz B, Colonna-Cesari F, Heitz F, Spach G. A family of double helices of alternating poly(γ-benzyl-D-L-glutamate), a stereochemical model for gramicidin A. J Mol Biol 1976; 106:915 - 42; http://dx.doi.org/10.1016/0022-2836(76)90343-0; PMID: 62054
  • Paolillo L, Temussi P, Trivellone E, Bradbury EM, Crane-Robinson C. Conformational studies of random DL copolypeptides in solution using high-resolution nucleic magnetic resonance. Macromolecules 1973; 6:831 - 8; http://dx.doi.org/10.1021/ma60036a010
  • Haque TS, Little JC, Gellman SH. Mirror image reverse turns promote β-hairpin formation. J Am Chem Soc 1994; 116:4105 - 6; http://dx.doi.org/10.1021/ja00088a067
  • Gulik-Krzywicki T, Fouquey C, Lehn JM. Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. Proc Natl Acad Sci U S A 1993; 90:163 - 7; http://dx.doi.org/10.1073/pnas.90.1.163; PMID: 11607345
  • Khazanovich N, Granja JR, McRee DE, Milligan RA, Ghadri MR. Nanoscale tubular ensembles with specified internal diameters. Design of self-assembled nanotube with a 13-Å pore. J Am Chem Soc 1994; 116:6011 - 2; http://dx.doi.org/10.1021/ja00092a079
  • Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S. A helical polymer with a cooperative response to chiral information. Science 1995; 268:1860 - 6; http://dx.doi.org/10.1126/science.268.5219.1860; PMID: 17797527
  • Pino P, Lorenzi GP. Optically active vinyl polymers. II. Optical activity of isotactic and block polymers of optically active a-olefins in dilute hydrocarbon solution. J Am Chem Soc 1960; 82:4745 - 7; http://dx.doi.org/10.1021/ja01502a077
  • Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, et al. The macromolecular route of chiral amplification. Angew Chem Int Ed Engl 1999; 38:3138 - 54; http://dx.doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3138::AID-ANIE3138>3.0.CO;2-C; PMID: 10556885
  • Allegra G, Corradini P, Ganis P. A model of the chain conformation of an isotactic vinyl polymer having optically active side groups. Makromol Chem 1966; 90:60 - 5; http://dx.doi.org/10.1002/macp.1966.020900106
  • Farina M.. The stereochemistry of linear macromolecules. Top Stereochem 1987; 17:1 - 111
  • Neuensch-wander P, Pino P. Optically active vinyl polymers. XXVI. The unperturbed dimensions of poly(S)-4-methyl-1-hexene and poly-4-methyl-1-pentene. Eur Polym J 1983; 19:1075 - 9; http://dx.doi.org/10.1016/0014-3057(83)90075-7
  • Pino P, Carlini C, Chiellini E, Ciardelli F, Salvadori P. Dissymmetric perturbed aromatic chromophore in stereoregular copolymers of (R)-3,7-dimethyl-1-octene with styrene. J Am Chem Soc 1968; 90:5025 - 7; http://dx.doi.org/10.1021/ja01020a047
  • Pino P, Ciardelli F, Montagnoli G, Pieroni O. The relation between monomer optical purity and polymer rotatory power in some linear poly-α-olefins. J Polym Sci Polym Lett 1967; 5:307 - 11; http://dx.doi.org/10.1002/pol.1967.110050406
  • Carlini C, Ciardelli F, Pino P. Optical activity and conformation in solution of stereoregular co-polymers of (S)-4-methyl-1-hexene with 4-methyl-1-pentene. Makromol Chem 1968; 119:244 - 8; http://dx.doi.org/10.1002/macp.1968.021190128
  • Green MM, Andreola C, Munoz B, Reidy MP, Zero K. Macromolecular stereochemistry: a cooperative deuterium isotope effect leading to a large optical rotation. J Am Chem Soc 1988; 110:4063 - 5; http://dx.doi.org/10.1021/ja00220a070
  • Gu H, Nakamura Y, Sato T, Teramoto A, Green MM, Andreola C, et al. Molecular-weight dependence of the optical rotation of poly((R)-2-deuterio-n-hexyl isocyanate). Macromolecules 1995; 28:1016 - 24; http://dx.doi.org/10.1021/ma00108a032
  • Jain V, Cheon K-S, Tang K, Jha S, Green MM. Chiral cooperativity in helical polymers. Isr J Chem 2011; 51:1067 - 74; http://dx.doi.org/10.1002/ijch.201100050
  • Mansfield ML. Broken wormlike chain model of semiflexible polymers. Macromolecules 1986; 19:854 - 9; http://dx.doi.org/10.1021/ma00157a064
  • Jha SK, Cheon K-S, Green MM, Selinger JV. Chiral optical properties of a helical polymer synthesized from near racemic chiral monomers highly diluted with achiral monomers. J Am Chem Soc 1999; 121:1665 - 73; http://dx.doi.org/10.1021/ja983202s
  • Selinger JV, Selinger RLB. Theory of chiral order in random copolymer. Phys Rev Lett 1996; 76:58 - 61
  • Green MM, Garetz BA, Munoz B, Chang H, Hoke S, Cooks RG. Majority rules in the copolymerization of mirror image isomers. J Am Chem Soc 1995; 117:4181 - 2; http://dx.doi.org/10.1021/ja00119a039
  • Cheon K-S, Selinger JV, Green MM. Counterintuitive influence of microscopic chirality on helical order in polymers, (Birthday Issue for Kurt Mislow). J Phys Org Chem 2004; 17:719 - 23
  • Yashima E, Maeda K. Chirality-responsive helical polymers. Macromolecules 2008; 41:3 - 12; http://dx.doi.org/10.1021/ma071453s
  • Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem Rev 2009; 109:6102 - 211; http://dx.doi.org/10.1021/cr900162q; PMID: 19905011
  • Pijper D, Feringa BL. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter 2008; 4:1349 - 72; http://dx.doi.org/10.1039/b801886c
  • Nakano T, Okamoto Y. Synthetic helical polymers: conformation and function. Chem Rev 2001; 101:4013 - 38; http://dx.doi.org/10.1021/cr0000978; PMID: 11740925
  • Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J. Optically active polysilanes. Ten years of progress and new polymer twist for nanoscience and nanotechnology. Polym J 2003; 35:297 - 344; http://dx.doi.org/10.1295/polymj.35.297
  • Palmans ARA, Meijer EW. Amplification of chirality in dynamic supramolecular aggregates. Angew Chem Int Ed Engl 2007; 46:8948 - 68; http://dx.doi.org/10.1002/anie.200701285; PMID: 17935098
  • Masuda M, Jonkheijm P, Sijbesma RP, Meijer EW. Photoinitiated polymerization of columnar stacks of self-assembled trialkyl-1,3,5-benzenetricarboxamide derivatives. J Am Chem Soc 2003; 125:15935 - 40; http://dx.doi.org/10.1021/ja037927u; PMID: 14677985
  • Kim H-J, Lim Y-B, Lee M. Self-assembly of supramolecular polymers into tunable helical structures. J. Polym. Sci. Polym Chem 2008; 46:1925 - 35; http://dx.doi.org/10.1002/pola.22569
  • Delsuc N, Massip S, Léger J-M, Kauffmann B, Huc I. Relative helix-helix conformations in branched aromatic oligoamide foldamers. J Am Chem Soc 2011; 133:3165 - 72; http://dx.doi.org/10.1021/ja110677a; PMID: 21306159
  • Jin W, Fukushima T, Niki M, Kosaka A, Ishii N, Aida T. Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc Natl Acad Sci U S A 2005; 102:10801 - 6; http://dx.doi.org/10.1073/pnas.0500852102; PMID: 16043721
  • Yashima E, Maeda K, Okamoto Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 1999; 399:449 - 51; http://dx.doi.org/10.1038/20900
  • Yashima E, Matsushima T, Okamoto Y. Chirality assignment od amines and amino alcohols based on circular dichroism induced by helix formation of stereoregular poly(4-carboxyphenylacetylene) through acid-base complexation. J Am Chem Soc 1997; 119:6345 - 59; http://dx.doi.org/10.1021/ja964470y
  • Saito MA, Maeda K, Onouchi H, Yashima E. Synthesis and macromolecular helicity induction of a stereoregular polyacetylene bearing a carboxy group with natural amino acids in water. Macromolecules 2000; 33:4616 - 8; http://dx.doi.org/10.1021/ma000484j
  • Yashima E, Maeda Y, Okamoto Y. Helix-Helix transition of optically active poly((1R,2S)-N-(4-ethynylbenzyl)norephedrine) induced by diastereomeric acid-base complexation using chiral stimuli. J Am Chem Soc 1998; 120:8895 - 6; http://dx.doi.org/10.1021/ja9818349
  • Fujiki M, Nakashima H, Toyoda S, Koe JR. Chirality in the polysilanes. Top Stereochem 2003; 24:209 - 80; http://dx.doi.org/10.1002/0471471895.ch4
  • Okamoto Y, Nakano T. Asymmetric polymerization. Chem Rev 1994; 94:349 - 72; http://dx.doi.org/10.1021/cr00026a004
  • Nakano T, Shikisai Y, Okamoto Y. Helix-sense-selective free radical polymerization of 1-phenyldibenzosuberyl methacrylate. Polym J 1996; 28:51 - 60; http://dx.doi.org/10.1295/polymj.28.51
  • Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J Am Chem Soc 1979; 101:4763 - 5; http://dx.doi.org/10.1021/ja00510a072
  • Nakano T, Okamoto Y. Synthetic helical polymers: conformation and function. Chem Rev 2001; 101:4013 - 38; http://dx.doi.org/10.1021/cr0000978; PMID: 11740925
  • Nakano T, Hidaka Y, Okamoto Y. Asymmetric polymerization of 9-phenylfluoren-9-yl methacrylate leading to a polymer with main-chain configurational chirality. Synthesis of optically active poly(methyl methacrylate). Polym J 1998; 30:596 - 600; http://dx.doi.org/10.1295/polymj.30.596
  • Ren C, Chen C, Xi F. Helix-sense-selective copolymerization of phenyl[bis(2-pyridyl)] methyl methacrylate and diphenyl(2-pyridyl)methyl methacrylate and triphenylmethyl methacrylate with chiral anionic initiators. J. Polym. Sci. Polym Chem 1998; 36:2127 - 33; http://dx.doi.org/10.1002/(SICI)1099-0518(19980915)36:12<2127::AID-POLA19>3.0.CO;2-8
  • Nakano T, Taniguchi K, Okamoto Y. Asymmetric polymerization of diphenyl-3-pyridylmethyl methacrylate leading to optically active polymer with helical conformation and chiral recognition ability of the polymer. Polym J 1997; 29:540 - 4; http://dx.doi.org/10.1295/polymj.29.540
  • Ren C, Chen F, Xi F, Nakano T, Okamoto Y. Helix-sense-selective polymerization of phenyl[bis(2-pyridyl)] methyl methacrylate and chiral recognition ability of the polymer. J. Polym. Sci. Polym Chem 1993; 31:2721 - 8; http://dx.doi.org/10.1002/pola.1993.080311107
  • Okamoto Y, Mohri H, Hatada K. Highly helix-sense-selective polymerization of diphenyl-2-pyridylmethyl methacrylate. Chem Lett 1988; 11:1879 - 82; http://dx.doi.org/10.1246/cl.1988.1879
  • Okamoto Y, Nishikawa M, Nakato T, Yashima E, Hatada K. Induction od a single-handed conformation through radical polymerization of optically active phenyl-2-pyridyl-o-tolylmethyl methacrylate. Macromolecules 1995; 28:5135 - 8; http://dx.doi.org/10.1021/ma00118a048
  • Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254:1497 - 500; http://dx.doi.org/10.1126/science.1962210; PMID: 1962210
  • Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R. Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr Top Med Chem 2011; 11:1535 - 54; http://dx.doi.org/10.2174/156802611795860979; PMID: 21510833
  • Ganesh KN, Nielsen PE. Peptide nucleic acids: analogs and derivatives. Curr Org Chem 2000; 4:931 - 43; http://dx.doi.org/10.2174/1385272003375969
  • Yeh JI, Shivachev B, Rapireddy S, Crawford MJ, Gil RR, Du S, et al. Crystal structure of chiral gammaPNA with complementary DNA strand: insights into the stability and specificity of recognition and conformational preorganization. J Am Chem Soc 2010; 132:10717 - 27; http://dx.doi.org/10.1021/ja907225d; PMID: 20681704
  • Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH. A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 2006; 128:10258 - 67; http://dx.doi.org/10.1021/ja0625576; PMID: 16881656
  • Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, et al. Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proc Natl Acad Sci U S A 2003; 100:12021 - 6; http://dx.doi.org/10.1073/pnas.2034746100; PMID: 14512516
  • Tackett AJ, Corey DR, Raney KD. Non-Watson-Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase. Nucleic Acids Res 2002; 30:950 - 7; http://dx.doi.org/10.1093/nar/30.4.950; PMID: 11842106
  • Sforza S, Haaima G, Marchelli R, Nielsen PE. Chiral peptide nucleic acids (PNAs): Helix handedness and DNA recognition. Eur J Org Chem 1999; 197 - 204; http://dx.doi.org/10.1002/(SICI)1099-0690(199901)1999:1<197::AID-EJOC197>3.0.CO;2-N
  • Johnson WC. In Circular Dichroism: Principles and Applications; Wiley-VCH (New York) 2000.
  • Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B. DNA-like double helix formed by peptide nucleic acid. Nature 1994; 368:561 - 3; http://dx.doi.org/10.1038/368561a0; PMID: 8139692
  • Wittung P, Eriksson M, Lyng R, Nielsen PE, Norden B. Induced chirality in PNA-PNA duplexes. J Am Chem Soc 1995; 117:10167 - 73; http://dx.doi.org/10.1021/ja00146a001
  • Totsingan F, Jain V, Bracken WC, Faccini A, Tedeschi T, Marchelli R, et al. Conformational heterogeneity in PNA:PNA duplexes. Macromolecules 2010; 43:2692 - 703; http://dx.doi.org/10.1021/ma902797f
  • Rasmussen H, Kastrup JS, Nielsen JN, Nielsen JM, Nielsen PE. Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 A resolution. Nat Struct Biol 1997; 4:98 - 101; http://dx.doi.org/10.1038/nsb0297-98; PMID: 9033585
  • Petersson B, Nielsen BB, Rasmussen H, Larsen IK, Gajhede M, Nielsen PE, et al. Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network. J Am Chem Soc 2005; 127:1424 - 30; http://dx.doi.org/10.1021/ja0458726; PMID: 15686374
  • Sforza S, Tedeschi T, Corradini R, Marchelli R. Induction of helical handedness and DNA binding properties of peptide nucleic acids (PNAs) with two stereogenic centers. Eur J Org Chem 2007; 5879 - 85; http://dx.doi.org/10.1002/ejoc.200700644
  • Bezer S, Rapireddy S, Skorik YA, Ly DH, Achim C. Coordination-driven inversion of handedness in ligand-modified PNA. Inorg Chem 2011; 50:11929 - 37; http://dx.doi.org/10.1021/ic200855p; PMID: 22059624
  • Tedeschi T, Sforza S, Dossena A, Corradini R, Marchelli R. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality. Chirality 2005; 17:Suppl S196 - 204; http://dx.doi.org/10.1002/chir.20128; PMID: 15952136
  • Tang K, Green MM, Cheon KS, Selinger JV, Garetz BA. Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state. J Am Chem Soc 2003; 125:7313 - 23; http://dx.doi.org/10.1021/ja030065c; PMID: 12797806