1,137
Views
23
CrossRef citations to date
0
Altmetric
Review

Artificial DNA and surface plasmon resonance

&
Pages 45-52 | Published online: 01 Apr 2012

References

  • El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev 2010; 39:1388 - 405; http://dx.doi.org/10.1039/b901971p; PMID: 20309492
  • Sinha ND, Michaud DP. Recent developments in the chemistry, analysis and control for the manufacture of therapeutic-grade synthetic oligonucleotides. Curr Opin Drug Discov Devel 2007; 10:807 - 18; PMID: 17987530
  • Navani NK, Li Y. Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 2006; 10:272 - 81; http://dx.doi.org/10.1016/j.cbpa.2006.04.003; PMID: 16678470
  • Di Giusto DA, King GC. Special-Purpose Modifications and Immobilized Functional Nucleic Acids for Biomolecular Interactions. Top Curr Chem 2006; 261:131 - 68; http://dx.doi.org/10.1007/b136673
  • Micklefield J. Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr Med Chem 2001; 8:1157 - 79; PMID: 11472234
  • Bell NM, Micklefield J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 2009; 10:2691 - 703; http://dx.doi.org/10.1002/cbic.200900341; PMID: 19739190
  • Weigand B-S, Zerressen A, Schlatterer JC, Helm M, Jaschke A. In vitro selection of short, catalytically active oligonucleotides; In The Aptamer Handbook: Functional Oligonucleotides and Their Applications, Klussmann, S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; Volume 1, pp. 211-227.
  • Pan W, Clawson GA. Catalytic DNAzymes: derivations and functions. Expert Opin Biol Ther 2008; 8:1071 - 85; http://dx.doi.org/10.1517/14712598.8.8.1071; PMID: 18613760
  • Doessing H, Vester B. Locked and unlocked nucleosides in functional nucleic acids. Molecules 2011; 16:4511 - 26; http://dx.doi.org/10.3390/molecules16064511; PMID: 21629180
  • Nagaswamy U, Voss N, Zhang Z, Fox GE. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res 2000; 28:375 - 6; http://dx.doi.org/10.1093/nar/28.1.375; PMID: 10592279
  • Nielsen PE. Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 2010; 7:786 - 804; http://dx.doi.org/10.1002/cbdv.201000005; PMID: 20397216
  • Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, et al. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998; 54:3607 - 30; http://dx.doi.org/10.1016/S0040-4020(98)00094-5
  • Hendrix C, Rosemeyer H, Verheggen I, Seela F, Van Aerschot A, Herdewijn P. 1′, 5′ -Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides. Chemistry 1997; 3:110 - 20; http://dx.doi.org/10.1002/chem.19970030118
  • Schultz RG, Gryaznov SM. Oligo-2′-fluoro-2′-deoxynucleotide N3′-->P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res 1996; 24:2966 - 73; http://dx.doi.org/10.1093/nar/24.15.2966; PMID: 8760881
  • Liedberg B, Nylander C, Lundström I. Biosensing with surface plasmon resonance-how it all started. Biosens Bioelectron 1995; 10:R1 - 9; http://dx.doi.org/10.1016/0956-5663(95)96965-2
  • Chandra H, Reddy PJ, Srivastava S. Protein microarrays and novel detection platforms. Expert Rev Proteomics 2011; 8:61 - 79; http://dx.doi.org/10.1586/epr.10.99; PMID: 21329428
  • Phillips KS, Cheng Q. Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 2007; 387:1831 - 40; http://dx.doi.org/10.1007/s00216-006-1052-7; PMID: 17203259
  • Piliarik M, Vaisocherová H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol 2009; 503:65 - 88; http://dx.doi.org/10.1007/978-1-60327-567-5_5; PMID: 19151937
  • Haes AJ, Duyne RP. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn 2004; 4:527 - 37; http://dx.doi.org/10.1586/14737159.4.4.527; PMID: 15225100
  • Shalabney A., Abdulhalim I.. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 2011; 5:571 - 606; http://dx.doi.org/10.1002/lpor.201000009
  • Jonnson U, Malmqvist M. In Advances in Biosensors; Turner, A., Ed.; JAI Press Ltd.: San Diego, 1992, 291.
  • Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108:462 - 93; http://dx.doi.org/10.1021/cr068107d; PMID: 18229953
  • Schasfoort RBM, Tudos AJ, eds. Handbook of Surface Plasmon Resonance 2008, 401 p. Springer.
  • Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev 2009; 109:1948 - 98; http://dx.doi.org/10.1021/cr030183i; PMID: 19301873
  • Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999; 45:1628 - 50; PMID: 10471678
  • Aptamers in Bioanalysis. M. Mascini (Ed.), John Wiley & Sons, Inc., New Jersey, U.S.A., 2009, pp. 63-86.
  • Bhosale AV, Hardikar SR, Naresh P, Bhujbal PU, Khirsagar AA, Malvankar SR. Oligonucleotide based therapeutics: aptamers. Res J Phar Tec 2009; 2:449 - 55
  • Di Fusco M, Tortolini C, Frasconi M, Mazzei F. Aptamer-based and DNAzyme-based biosensors for environmental monitoring. Int J Environ Health 2011; 5:186 - 204; http://dx.doi.org/10.1504/IJENVH.2011.041327
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346:818 - 22; http://dx.doi.org/10.1038/346818a0; PMID: 1697402
  • Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990; 344:467 - 8; http://dx.doi.org/10.1038/344467a0; PMID: 1690861
  • Song S, Wang L, Li J, Zhao J, Fan C. Aptamer-based biosensors. Trends Analyt Chem 2008; 7:108 - 17; http://dx.doi.org/10.1016/j.trac.2007.12.004
  • Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2012; 51:1316 - 32; http://dx.doi.org/10.1002/anie.201006630; PMID: 22213382
  • Misono TS, Kumar PKR. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 2005; 342:312 - 7; http://dx.doi.org/10.1016/j.ab.2005.04.013; PMID: 15913532
  • Kim YH, Kim JP, Han SJ, Sim SJ. Aptamer biosensor for label-free detection of human immunoglobulin E based on surface plasmon resonance. Sens Actuators B Chem 2009; 139:471 - 5; http://dx.doi.org/10.1016/j.snb.2009.03.013
  • Bini A, Centi S, Tombelli S, Minunni M, Mascini M. Development of an optical RNA-based aptasensor for C-reactive protein. Anal Bioanal Chem 2008; 390:1077 - 86; http://dx.doi.org/10.1007/s00216-007-1736-7; PMID: 18066708
  • Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005; 67:135 - 41; http://dx.doi.org/10.1016/j.bioelechem.2004.04.011; PMID: 16027048
  • Li Y, Lee HJ, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 2007; 79:1082 - 8; http://dx.doi.org/10.1021/ac061849m; PMID: 17263339
  • Kuramochi H, Hayashi K, Uchida K, Miyakura S, Shimizu D, Vallböhmer D, et al. Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin Cancer Res 2006; 12:29 - 33; http://dx.doi.org/10.1158/1078-0432.CCR-05-1275; PMID: 16397020
  • Lee SJ, Youn BS, Park JW, Niazi JH, Kim YS, Gu MB. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 2008; 80:2867 - 73; http://dx.doi.org/10.1021/ac800050a; PMID: 18324839
  • Zanoli LM, D’Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 2012; 402:1759 - 71; http://dx.doi.org/10.1007/s00216-011-5318-3; PMID: 21866403
  • Wang J, Zhou HS. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal Chem 2008; 80:7174 - 8; http://dx.doi.org/10.1021/ac801281c; PMID: 18707133
  • Wang J, Munir A, Li Z, Zhou HS. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens Bioelectron 2009; 25:124 - 9; http://dx.doi.org/10.1016/j.bios.2009.06.016; PMID: 19592231
  • Tuleuova N, Jones CN, Yan J, Ramanculov E, Yokobayashi Y, Revzin A. Development of an aptamer beacon for detection of interferon-gamma. Anal Chem 2010; 82:1851 - 7; http://dx.doi.org/10.1021/ac9025237; PMID: 20121141
  • Liu Y, Tuleouva N, Ramanculov E, Revzin A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 2010; 82:8131 - 6; http://dx.doi.org/10.1021/ac101409t; PMID: 20815336
  • Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2005; 20:2424 - 34; http://dx.doi.org/10.1016/j.bios.2004.11.006; PMID: 15854817
  • Willner I, Shlyahovsky B, Zayats M, Willner B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 2008; 37:1153 - 65; http://dx.doi.org/10.1039/b718428j; PMID: 18497928
  • Li D, Shlyahovsky B, Elbaz J, Willner I. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 2007; 129:5804 - 5; http://dx.doi.org/10.1021/ja070180d; PMID: 17432859
  • Travascio P, Bennet AJ, Wang DY, Sen D. A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 1999; 6:779 - 87; http://dx.doi.org/10.1016/S1074-5521(99)80125-2; PMID: 10574780
  • Breaker RR. Natural and engineered nucleic acids as tools to explore biology. Nature 2004; 432:838 - 45; http://dx.doi.org/10.1038/nature03195; PMID: 15602549
  • Teller C, Shimron S, Willner I. Aptamer-DNAzyme hairpins for amplified biosensing. Anal Chem 2009; 81:9114 - 9; http://dx.doi.org/10.1021/ac901773b; PMID: 19780593
  • Breaker RR. DNA enzymes. Nat Biotechnol 1997; 15:427 - 31; http://dx.doi.org/10.1038/nbt0597-427; PMID: 9131619
  • Achenbach JC, Chiuman W, Cruz RPG, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 2004; 5:321 - 36; http://dx.doi.org/10.2174/1389201043376751; PMID: 15320762
  • Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 1997; 94:4262 - 6; http://dx.doi.org/10.1073/pnas.94.9.4262; PMID: 9113977
  • Cieslak M, Szymanski J, Adamiak RW, Cierniewski CS. Structural rearrangements of the 10-23 DNAzyme to beta 3 integrin subunit mRNA induced by cations and their relations to the catalytic activity. J Biol Chem 2003; 278:47987 - 96; http://dx.doi.org/10.1074/jbc.M300504200; PMID: 12952967
  • Tarkoy M, Leumann C. Synthesis and Pairing Properties of Decanucleotides from (3′S,5′R)-2′-Deoxy-3′, 5′-ethanoß-D-ribofuranosyladenine and –thymine. Angew Chem Int Ed Engl 1993; 32:1432 - 4; http://dx.doi.org/10.1002/anie.199314321
  • Nielsen PE. Peptide Nucleic Acid. A Molecule with Two Identities. Acc Chem Res 1999; 32:624 - 30; http://dx.doi.org/10.1021/ar980010t
  • Nielsen PE. Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr Opin Biotechnol 2001; 12:16 - 20; http://dx.doi.org/10.1016/S0958-1669(00)00170-1; PMID: 11167067
  • Gambari R. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 2001; 7:1839 - 62; http://dx.doi.org/10.2174/1381612013397087; PMID: 11562312
  • Chu LQ, Foerch R, Knoll W. Surface-Plasmon-Enhanced Fluorescence Spectroscopy for DNA Detection Using Fluorescently Labeled PNA as “DNA Indicator”. Angew Chem 2007; 119:5032 - 5; http://dx.doi.org/10.1002/ange.200605247
  • Sforza S, Corradini R, Tedeschi T, Marchelli R. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem Soc Rev 2011; 40:221 - 32; http://dx.doi.org/10.1039/b907695f; PMID: 20882238
  • Zanoli LM, Licciardello M, D’Agata R, Lantano C, Calabretta A, Corradini R, et al. Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices. Anal Bioanal Chem 2012; http://dx.doi.org/10.1007/s00216-011-5638-3; PMID: 22212864
  • Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I. Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction. Biosens Bioelectron 1999; 14:397 - 404; http://dx.doi.org/10.1016/S0956-5663(99)00018-4; PMID: 10422241
  • Burgener M, Sänger M, Candrian U. Synthesis of a stable and specific surface plasmon resonance biosensor surface employing covalently immobilized peptide nucleic acids. Bioconjug Chem 2000; 11:749 - 54; http://dx.doi.org/10.1021/bc0000029; PMID: 11087321
  • Jensen KK, Ørum H, Nielsen PE, Nordén B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 1997; 36:5072 - 7; http://dx.doi.org/10.1021/bi9627525; PMID: 9125529
  • Kambhampati D, Nielsen PE, Knoll W. Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy. Biosens Bioelectron 2001; 16:1109 - 18; http://dx.doi.org/10.1016/S0956-5663(01)00239-1; PMID: 11679296
  • Knoll W, Park H, Sinner EK, Yao D, Yu F. Supramolecular interfacial architectures for optical biosensing with surface plasmons. Surf Sci 2004; 570:30 - 42; http://dx.doi.org/10.1016/j.susc.2004.06.192
  • Yu F, Persson B, Löfås S, Knoll W. Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J Am Chem Soc 2004; 126:8902 - 3; http://dx.doi.org/10.1021/ja048583q; PMID: 15264814
  • Kai E, Ikebukuro K, Hoshina S, Watanabe H, Karube I. Detection of PCR products of Escherichia coli O157:H7 in human stool samples using surface plasmon resonance (SPR). FEMS Immunol Med Microbiol 2000; 29:283 - 8; http://dx.doi.org/10.1111/j.1574-695X.2000.tb01535.x; PMID: 11118909
  • Ratilainen T, Holmén A, Tuite E, Nielsen PE, Nordén B. Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 2000; 39:7781 - 91; http://dx.doi.org/10.1021/bi000039g; PMID: 10869183
  • Wang J, Rivas G, Cai X, Chicharro M, Parrado C, Dontha N, et al. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal Chim Acta 1997; 344:111 - 8; http://dx.doi.org/10.1016/S0003-2670(97)00039-1
  • Sato Y, Fujimoto K, Kawaguchi H. Detection of a K-ras point mutation employing peptide nucleic acid at the surface of a SPR biosensor. Colloids Surf B Biointerfaces 2003; 27:23 - 31; http://dx.doi.org/10.1016/S0927-7765(02)00027-9
  • Corradini R, Feriotto G, Sforza S, Marchelli R, Gambari R. Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. J Mol Recognit 2004; 17:76 - 84; http://dx.doi.org/10.1002/jmr.646; PMID: 14872540
  • Sforza S, Galaverna G, Dossena A, Corradini R, Marchelli R. Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs. Chirality 2002; 14:591 - 8; http://dx.doi.org/10.1002/chir.10087; PMID: 12112334
  • Neilson PE, Haaima G. Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 1997; 26:73 - 8; http://dx.doi.org/10.1039/cs9972600073
  • Rothenhausler B, Knoll W. Surface–plasmon microscopy. Nature 1988; 332:615 - 7; http://dx.doi.org/10.1038/332615a0
  • Ruemmele JA, Golden MS, Gao Y, Cornelius EM, Anderson ME, Postelnicu L, et al. Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning. Anal Chem 2008; 80:4752 - 6; http://dx.doi.org/10.1021/ac702544q; PMID: 18476718
  • Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods 2005; 37:26 - 36; http://dx.doi.org/10.1016/j.ymeth.2005.05.003; PMID: 16199172
  • D’Agata R, Grasso G, Iacono G, Spoto G, Vecchio G. Lectin recognition of a new SOD mimic bioconjugate studied with surface plasmon resonance imaging. Org Biomol Chem 2006; 4:610 - 2; http://dx.doi.org/10.1039/b517074e; PMID: 16467932
  • D’Agata R, Grasso G, Spoto G. Real-Time Binding Kinetics Monitored with Surface Plasmon Resonance Imaging in a Diffusion-Free Environment. The Open Spectroscopy Journal 2008; 2:1 - 9; http://dx.doi.org/10.2174/1874383800802010001
  • Grasso G, D'Agata R, Zanoli L, Spoto G. Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments. Microchem J 2009; 93:82 - 6; http://dx.doi.org/10.1016/j.microc.2009.05.001
  • Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405:827 - 36; http://dx.doi.org/10.1038/35015701; PMID: 10866209
  • He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, et al. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J Am Chem Soc 2000; 122:9071 - 7; http://dx.doi.org/10.1021/ja001215b
  • Lee HJ, Wark AW, Corn RM. Creating advanced multifunctional biosensors with surface enzymatic transformations. Langmuir 2006; 22:5241 - 50; http://dx.doi.org/10.1021/la060223o; PMID: 16732647
  • Liu J, Tian S, Tiefenauer L, Nielsen PE, Knoll W. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates. Anal Chem 2005; 77:2756 - 61; http://dx.doi.org/10.1021/ac048088c; PMID: 15859590
  • Spoto G, Corradini R, eds. Detection of non-amplified genomic DNA. Springer, 2012.
  • D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G. Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. Chembiochem 2008; 9:2067 - 70; http://dx.doi.org/10.1002/cbic.200800310; PMID: 18680134
  • Zanoli L, D’Agata R, Spoto G. Surface plasmon-based optical detection of DNA by peptide nucleic acids. Minerva Biotec 2008; 20:165 - 74
  • D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, et al. Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioelectron 2010; 25:2095 - 100; http://dx.doi.org/10.1016/j.bios.2010.02.008; PMID: 20227870
  • D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R. Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem 2011; 83:8711 - 7; http://dx.doi.org/10.1021/ac2021932; PMID: 21978174
  • Joung HA, Lee NR, Lee SK, Ahn J, Shin YB, Choi HS, et al. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 2008; 630:168 - 73; http://dx.doi.org/10.1016/j.aca.2008.10.001; PMID: 19012828
  • Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochem 2004; 43:3233 - 13241
  • Petersen M, Wengel J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 2003; 21:74 - 81; http://dx.doi.org/10.1016/S0167-7799(02)00038-0; PMID: 12573856
  • Natsume T, Ishikawa Y, Dedachi K, Tsukamoto T, Kurita N. Hybridization energies of double strands composed of DNA, RNA, PNA and LNA. Chem Phys Lett 2007; 434:133 - 8; http://dx.doi.org/10.1016/j.cplett.2006.12.017; PMID: 18548123
  • Demidov VV. PNA and LNA throw light on DNA. Trends Biotechnol 2003; 21:4 - 7; http://dx.doi.org/10.1016/S0167-7799(02)00008-2; PMID: 12480343
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281 - 97; http://dx.doi.org/10.1016/S0092-8674(04)00045-5; PMID: 14744438
  • Fang S, Lee HJ, Wark AW, Corn RM. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 2006; 128:14044 - 6; http://dx.doi.org/10.1021/ja065223p; PMID: 17061884
  • Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006; 12:913 - 20; http://dx.doi.org/10.1261/rna.2332406; PMID: 16540696
  • Kerremans L, Schepers G, Rozenski J, Busson R, Van Aerschot A, Herdewijn P. Hybridization between “six-membered” nucleic acids: RNA as a universal information system. Org Lett 2001; 3:4129 - 32; http://dx.doi.org/10.1021/ol016183r; PMID: 11784159
  • Herdewijn P. Nucleic acids with a six-membered ‘carbohydrate’ mimic in the backbone. Chem Biodivers 2010; 7:1 - 59; http://dx.doi.org/10.1002/cbdv.200900185; PMID: 20087996
  • Kolb G, Reigadas S, Boiziau C, van Aerschot A, Arzumanov A, Gait MJ, et al. Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA. Biochemistry 2005; 44:2926 - 33; http://dx.doi.org/10.1021/bi048393s; PMID: 15723535
  • Boder ET, Jiang W. Engineering antibodies for cancer therapy. Annu Rev Chem Biomol Eng 2011; 2:53 - 75; http://dx.doi.org/10.1146/annurev-chembioeng-061010-114142; PMID: 22432610
  • He J, Liu G, Vanderheyden JL, Dou S, Mary R, Hnatowich DJ. Affinity enhancement bivalent morpholino for pretargeting: initial evidence by surface plasmon resonance. Bioconjug Chem 2005; 16:338 - 45; http://dx.doi.org/10.1021/bc049719c; PMID: 15769087