3,259
Views
71
CrossRef citations to date
0
Altmetric
Basic Research Paper

Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii

, &
Pages 376-388 | Received 01 Aug 2011, Accepted 27 Nov 2011, Published online: 03 Feb 2012

References

  • Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 2011; 155:86 - 92; http://dx.doi.org/10.1104/pp.110.168831; PMID: 21084435
  • Rochaix JD. Assembly of the photosynthetic apparatus. Plant Physiol 2011; 155:1493 - 500; http://dx.doi.org/10.1104/pp.110.169839; PMID: 21239619
  • Rochaix JD. Regulation of photosynthetic electron transport. Biochim Biophys Acta 2011; 1807:375 - 83; http://dx.doi.org/10.1016/j.bbabio.2010.11.010; PMID: 21118674
  • Grossman AR, Lohr M, Im CS. Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 2004; 38:119 - 73; http://dx.doi.org/10.1146/annurev.genet.38.072902.092328; PMID: 15568974
  • Lohr M. Carotenoids. In: Stern DB, ed. The Chlamydomonas Sourcebook Organellar and Metabolic Processes. Amsterdam: Academic Press, 2009:799-817.
  • Boussiba S. Carotenogenesisin the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 2000; 108:111 - 7; http://dx.doi.org/10.1034/j.1399-3054.2000.108002111.x
  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 2007; 74:1163 - 74; http://dx.doi.org/10.1007/s00253-007-0844-9; PMID: 17277962
  • Havaux M, Niyogi KK. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 1999; 96:8762 - 7; http://dx.doi.org/10.1073/pnas.96.15.8762; PMID: 10411949
  • Niyogi KK, Bjorkman O, Grossman AR. The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 1997; 94:14162 - 7; http://dx.doi.org/10.1073/pnas.94.25.14162; PMID: 9391170
  • Peterman EJ, Gradinaru CC, Calkoen F, Borst JC, van Grondelle R, van Amerongen H. Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 1997; 36:12208 - 15; http://dx.doi.org/10.1021/bi9711689; PMID: 9315858
  • Sarry JE, Montillet JL, Sauvaire Y, Havaux M. The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett 1994; 353:147 - 50; http://dx.doi.org/10.1016/0014-5793(94)01028-5; PMID: 7926040
  • Armstrong GA, Hearst JE. Carotenoids 2: Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 1996; 10:228 - 37; PMID: 8641556
  • Cazzonelli CI, Pogson BJ. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 2010; 15:266 - 74; http://dx.doi.org/10.1016/j.tplants.2010.02.003; PMID: 20303820
  • Cunningham FX, Gantt E. Genes and Enzymes of Carotenoid Biosynthesis in Plants. Annu Rev Plant Physiol Plant Mol Biol 1998; 49:557 - 83; http://dx.doi.org/10.1146/annurev.arplant.49.1.557; PMID: 15012246
  • Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 2001; 4:210 - 8; http://dx.doi.org/10.1016/S1369-5266(00)00163-1; PMID: 11312131
  • Sager R, Zalokar M. Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature 1958; 182:98 - 100; http://dx.doi.org/10.1038/182098a0; PMID: 13566193
  • Harris EH. Chlamydomonas as a Model Organism. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:363 - 406; http://dx.doi.org/10.1146/annurev.arplant.52.1.363; PMID: 11337403
  • Waters MT, Langdale JA. The making of a chloroplast. EMBO J 2009; 28:2861 - 73; http://dx.doi.org/10.1038/emboj.2009.264; PMID: 19745808
  • McCarthy SS, Kobayashi MC, Niyogi KK. White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 2004; 168:1249 - 57; http://dx.doi.org/10.1534/genetics.104.030635; PMID: 15579683
  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 2007; 143:291 - 9; http://dx.doi.org/10.1104/pp.106.092106; PMID: 17098847
  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10:458 - 67; http://dx.doi.org/10.1038/nrm2708; PMID: 19491929
  • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9:1102 - 9; http://dx.doi.org/10.1038/ncb1007-1102; PMID: 17909521
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.. FEBS Lett 1993; 333:169 - 74; http://dx.doi.org/10.1016/0014-5793(93)80398-E; PMID: 8224160
  • Bassham DC. Plant autophagy–more than a starvation response. Curr Opin Plant Biol 2007; 10:587 - 93; http://dx.doi.org/10.1016/j.pbi.2007.06.006; PMID: 17702643
  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, et al. Autophagy in development and stress responses of plants. Autophagy 2006; 2:2 - 11; PMID: 16874030
  • Díaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008; 4:851 - 65; PMID: 18670193
  • Bassham DC. Function and regulation of macroautophagy in plants. Biochim Biophys Acta 2009; 1793:1397 - 403; http://dx.doi.org/10.1016/j.bbamcr.2009.01.001; PMID: 19272302
  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488 - 92; http://dx.doi.org/10.1038/35044114; PMID: 11100732
  • Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 2005; 42:598 - 608; http://dx.doi.org/10.1111/j.1365-313X.2005.02396.x; PMID: 15860017
  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 2005; 138:2097 - 110; http://dx.doi.org/10.1104/pp.105.060673; PMID: 16040659
  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004; 16:2967 - 83; http://dx.doi.org/10.1105/tpc.104.025395; PMID: 15494556
  • Pérez-Pérez ME, Crespo JL. Autophagy in the model alga Chlamydomonas reinhardtii.. Autophagy 2010; 6:562 - 3; http://dx.doi.org/10.4161/auto.6.4.11822; PMID: 20404489
  • Pérez-Pérez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii.. Plant Physiol 2010; 152:1874 - 88; http://dx.doi.org/10.1104/pp.109.152520; PMID: 20107021
  • Inwood W, Yoshihara C, Zalpuri R, Kim KS, Kustu S. The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. Mol Plant 2008; 1:925 - 37; http://dx.doi.org/10.1093/mp/ssn046; PMID: 19825593
  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 2008; 148:142 - 55; http://dx.doi.org/10.1104/pp.108.122770; PMID: 18614709
  • Izumi M, Wada S, Makino A, Ishida H. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 2010; 154:1196 - 209; http://dx.doi.org/10.1104/pp.110.158519; PMID: 20807997
  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 2009; 149:885 - 93; http://dx.doi.org/10.1104/pp.108.130013; PMID: 19074627
  • Sandmann G, Albrecht M. Accumulation of colorless carotenes and derivatives during interaction of bleaching herbicides with phytoene desaturation. Z Naturforsch C 1990; 45:487 - 91
  • Li Z, Wakao S, Fischer BB, Niyogi KK. Sensing and responding to excess light. Annu Rev Plant Biol 2009; 60:239 - 60; http://dx.doi.org/10.1146/annurev.arplant.58.032806.103844; PMID: 19575582
  • Finazzi G, Furia A, Barbagallo RP, Forti G. State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii.. Biochim Biophys Acta 1999; 1413:117 - 29; http://dx.doi.org/10.1016/S0005-2728(99)00089-4; PMID: 10556624
  • Babbs CF, Pham JA, Coolbaugh RC. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 1989; 90:1267 - 70; http://dx.doi.org/10.1104/pp.90.4.1267; PMID: 16666920
  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 2011; http://dx.doi.org/10.1016/j.pbi.2011.07.014; PMID: 21862390
  • Liu Y, Xiong Y, Bassham DC. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 2009; 5:954 - 63; http://dx.doi.org/10.4161/auto.5.7.9290; PMID: 19587533
  • Anderson A, Bothwell JH, Laohavisit A, Smith AG, Davies JM. NOX or not? Evidence for algal NADPH oxidases. Trends Plant Sci 2011; 16:579 - 81; http://dx.doi.org/10.1016/j.tplants.2011.09.003; PMID: 22000495
  • Luykx P, Hoppenrath M, Robinson D. Structure and behaviour of contractile vacuoles in Chlamydomonas reinhardtii.. Protoplasma 1997; 198:73 - 84; http://dx.doi.org/10.1007/BF01282133
  • Park H, Eggink L, Roberson R, Hoober J. Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): a pathway for degradation. J Phycol 1999; 35:528 - 38; http://dx.doi.org/10.1046/j.1529-8817.1999.3530528.x
  • Sager R, Palade GE. Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J Biophys Biochem Cytol 1957; 3:463 - 88; http://dx.doi.org/10.1083/jcb.3.3.463; PMID: 13438931
  • Komine Y, Eggink LL, Park H, Hoober JK. Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 2000; 210:897 - 905; http://dx.doi.org/10.1007/s004250050695; PMID: 10872220
  • Fischer BB, Krieger-Liszkay A, Hideg E, Snyrychova I, Wiesendanger M, Eggen RI. Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii.. FEBS Lett 2007; 581:5555 - 60; http://dx.doi.org/10.1016/j.febslet.2007.11.003; PMID: 17997989
  • Fischer BB, Rufenacht K, Dannenhauer K, Wiesendanger M, Eggen RI. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii.. Environ Toxicol Chem 2010; 29:2211 - 9; http://dx.doi.org/10.1002/etc.264; PMID: 20872684
  • Niyogi KK, Grossman AR, Bjorkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 1998; 10:1121 - 34; PMID: 9668132
  • Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, et al. Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 2004; 279:6337 - 44; http://dx.doi.org/10.1074/jbc.M312919200; PMID: 14665619
  • Chung T, Suttangkakul A, Vierstra RD. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 2009; 149:220 - 34; http://dx.doi.org/10.1104/pp.108.126714; PMID: 18790996
  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 1991; 10:1723 - 32; PMID: 2050109
  • Herrin DL, Battey JF, Greer K, Schmidt GW. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. J Biol Chem 1992; 267:8260 - 9; PMID: 1373722
  • Miura E, Kato Y, Sakamoto W. Reactive oxygen species derived from impaired quality control of photosystem II are irrelevant to plasma-membrane NADPH oxidases. Plant Signal Behav 2010; 5:264 - 6; http://dx.doi.org/10.4161/psb.5.3.10604; PMID: 20023407
  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, et al. ROS signaling: the new wave?. Trends Plant Sci 2011; 16:300 - 9; http://dx.doi.org/10.1016/j.tplants.2011.03.007; PMID: 21482172
  • Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS...thiol network is the principal suspect for autophagy commitment. Autophagy 2010; 6:999 - 1005; http://dx.doi.org/10.4161/auto.6.7.12754; PMID: 20639698
  • Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2011; 36:30 - 8; http://dx.doi.org/10.1016/j.tibs.2010.07.007; PMID: 20728362
  • Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy 2011; 7:297 - 300; http://dx.doi.org/10.4161/auto.7.3.14502; PMID: 21252623
  • Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152:51 - 64; http://dx.doi.org/10.1083/jcb.152.1.51; PMID: 11149920
  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151:263 - 76; http://dx.doi.org/10.1083/jcb.151.2.263; PMID: 11038174
  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749 - 60; http://dx.doi.org/10.1038/sj.emboj.7601623; PMID: 17347651
  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107:4153 - 8; http://dx.doi.org/10.1073/pnas.0913860107; PMID: 20160076
  • Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana.. PLoS ONE 2010; 5:e11883; http://dx.doi.org/10.1371/journal.pone.0011883; PMID: 20686696
  • Harris EH. The Chlamydomonas Sourcebook. San Diego: Academic Press, 1989.
  • Crespo JL, Diaz-Troya S, Florencio FJ. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.. Plant Physiol 2005; 139:1736 - 49; http://dx.doi.org/10.1104/pp.105.070847; PMID: 16299168
  • Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998; 141:993 - 1008; http://dx.doi.org/10.1083/jcb.141.4.993; PMID: 9585417
  • Díaz-Troya S, Florencio FJ, Crespo JL. Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii.. Eukaryot Cell 2008; 7:212 - 22; http://dx.doi.org/10.1128/EC.00361-07; PMID: 18039939
  • Baroli I, Do AD, Yamane T, Niyogi KK. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 2003; 15:992 - 1008; http://dx.doi.org/10.1105/tpc.010405; PMID: 12671093
  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 2005; 17:957 - 70; http://dx.doi.org/10.1105/tpc.104.029603; PMID: 15705948

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.