2,284
Views
100
CrossRef citations to date
0
Altmetric
Basic Research Paper

Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors

Pages 1145-1158 | Received 26 May 2011, Accepted 27 May 2011, Published online: 01 Oct 2011

References

  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8:931 - 937; nrm2245 PMID: 17712358
  • Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6:438 - 448; PMID: 20484971; http://dx.doi.org/10.4161/auto.6.4.12244
  • Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 2010; 12:747 - 757; PMID: 20639872; http://dx.doi.org/10.1038/ncb2078
  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141:656 - 667; PMID: 20478256; http://dx.doi.org/10.1016/j.cell.2010.04.009
  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol-3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182:685 - 701; PMID: 18725538; http://dx.doi.org/10.1083/jcb.200803137
  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11:1433 - 1437; PMID: 19898463; http://dx.doi.org/10.1038/ncb1991
  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10:458 - 467; PMID: 19491929; http://dx.doi.org/10.1038/nrm2708
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22:124 - 131; PMID: 20034776; http://dx.doi.org/10.1016/j.ceb.2009.11.014
  • Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466:68 - 76; PMID: 20562859; http://dx.doi.org/10.1038/nature09204
  • Walsh CM, Edinger AL. The complex interplay between autophagy, apoptosis and necrotic signals promotes T-cell homeostasis. Immunol Rev 2010; 236:95 - 109; PMID: 20636811; http://dx.doi.org/10.1111/j.1600-65X.2010.00919.x
  • Moreau K, Luo S, Rubinsztein DC. Cytoprotective roles for autophagy. Curr Opin Cell Biol 2010; 22:206 - 211; PMID: 20045304; http://dx.doi.org/10.1016/j.ceb.2009.12.002
  • Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol 2010; 12:1026 - 1035; PMID: 20557314; http://dx.doi.org/10.1111/j.1462-5822.2010.01491.x
  • Melendez A, Neufeld TP. The cell biology of autophagy in metazoans: a developing story. Development 2008; 135:2347 - 2360; PMID: 18567846; http://dx.doi.org/10.1242/dev.016105
  • Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 2010; 584:1379 - 1385; PMID: 20083108; http://dx.doi.org/10.1016/j.febslet.2010.01.018
  • Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008; 13:1211 - 1218; PMID: 19021777; http://dx.doi.org/10.1111/j.1365-2443.2008.01238.x
  • Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell 2009; 34:259 - 269; PMID: 19450525; http://dx.doi.org/10.1016/j.molcel.2009.04.026
  • Kirkin V, Lamark T, Johansen T, Dikic I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 2009; 5:732 - 733; PMID: 19398892; http://dx.doi.org/10.4161/auto.5.5.8566
  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149 - 1163; PMID: 18083104; http://dx.doi.org/10.1016/j.cell.2007.10.035
  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282:24131 - 24145; PMID: 17580304; http://dx.doi.org/10.1074/jbc.M702824200
  • Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 2010; 584:1374 - 1378; PMID: 20153326; http://dx.doi.org/10.1016/j.febslet.2010.02.017
  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12:213 - 223; PMID: 20173742; http://dx.doi.org/10.1038/ncb2021
  • Du Y, Wooten MC, Gearing M, Wooten MW. Ageassociated oxidative damage to the p62 promoter: implications for Alzheimer disease. Free Radic Biol Med 2009; 46:492 - 501; PMID: 19071211; http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.003
  • Du Y, Wooten MC, Wooten MW. Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis 2009; 35:302 - 310; PMID: 19481605; http://dx.doi.org/10.1016/j.nbd.2009.05.015
  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137:1062 - 1075; PMID: 19524509; http://dx.doi.org/10.1016/j.cell.2009.03.048
  • Sanz L, Diaz-Meco MT, Nakano H, Moscat J. The atypical PKC-interacting protein p62 channels NFkappaB activation by the IL-1-TRAF6 pathway. EMBO J 2000; 19:1576 - 1586; PMID: 10747026; http://dx.doi.org/10.1093/emboj/19.7.1576
  • Nakamura K, Kimple AJ, Siderovski DP, Johnson GL. PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NFkappaB activation. J Biol Chem 2010; 285:2077 - 2089; PMID: 19903815; http://dx.doi.org/10.1074/jbc.M109.065102
  • Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 2010; 6:330 - 344; PMID: 20168092; http://dx.doi.org/10.4161/auto.6.3.11226
  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009; 33:505 - 516; PMID: 19250911; http://dx.doi.org/10.1016/j.molcel.2009.01.020
  • Mardakheh FK, Auciello G, Dafforn TR, Rappoport JZ, Heath JK. Nbr1 is a novel inhibitor of ligandmediated receptor tyrosine kinase degradation. Mol Cell Biol 2010; 30:5672 - 5685; PMID: 20937771; http://dx.doi.org/10.1128/MCB.00878-10
  • Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010; 12:836 - 841; PMID: 20811356; http://dx.doi.org/10.1038/ncb0910-836
  • Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, et al. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 2003; 278:34568 - 34581; PMID: 12813044; http://dx.doi.org/10.1074/jbc.M303221200
  • Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett 2009; 583:1846 - 1852; PMID: 19427866; http://dx.doi.org/10.1016/j.febslet.2009.04.049
  • Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 2010; PMID: 20734094; http://dx.doi.org/10.1007/s00709-010-0190-0
  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008; 4:851 - 865; PMID: 18670193
  • Yoshimoto K, Takano Y, Sakai Y. Autophagy in plants and phytopathogens. FEBS Lett 2010; 584:1350 - 1358; PMID: 20079356; http://dx.doi.org/10.1016/j.febslet.2010.01.007
  • Slavikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, et al. The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 2005; 56:2839 - 2849; PMID: 16157655; http://dx.doi.org/10.1093/jxb/eri276
  • Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G. An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 2008; 59:4029 - 4043; PMID: 18836138; http://dx.doi.org/10.1093/jxb/ern244
  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 2005; 138:2097 - 2110; PMID: 16040659; http://dx.doi.org/10.1104/pp.105.060673
  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. Processing of ATG8s, ubiquitinlike proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004; 16:2967 - 2983; PMID: 15494556; http://dx.doi.org/10.1105/tpc.104.025395
  • Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 2005; 42:598 - 608; PMID: 15860017; http://dx.doi.org/10.1111/j.1365-313X.2005.02396.x
  • Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J 2010; 62:483 - 493; PMID: 20136727; http://dx.doi.org/10.1111/j.1365313X.2010.04166.x
  • Phillips AR, Suttangkakul A, Vierstra RD. The ATG12conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008; 178:1339 - 1353; PMID: 18245858; http://dx.doi.org/10.1534/genetics.107.086199
  • Thompson AR, Vierstra RD. Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 2005; 8:165 - 173; PMID: 15752997; http://dx.doi.org/10.1016/j.pbi.2005.01.013
  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 2002; 277:33105 - 33114; PMID: 12070171; http://dx.doi.org/10.1074/jbc.M204630200
  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 2007; 143:291 - 299; PMID: 17098847; http://dx.doi.org/10.1104/pp.106.092106
  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 2002; 129:1181 - 1193; PMID: 12114572; http://dx.doi.org/10.1104/pp.011024
  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 2009; 149:885 - 893; PMID: 19074627; http://dx.doi.org/10.1104/pp.108.130013
  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, et al. Mobilization of rubisco and stromalocalized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 2008; 148:142 - 155; PMID: 18614709; http://dx.doi.org/10.1104/pp.108.122770
  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 2006; 47:1641 - 1652; PMID: 17085765; http://dx.doi.org/10.1093/pcp/pcl031
  • Moriyasu Y, Hattori M, Jauh GY, Rogers JC. Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 2003; 44:795 - 802; PMID: 12941871; http://dx.doi.org/10.1093/pcp/pcg100
  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009; 21:2914 - 2927; PMID: 19773385; http://dx.doi.org/10.1105/tpc.109.068635
  • Lewandowska M, Wawrzynska A, Kaminska J, Liszewska F, Sirko A. Saito K, De Kok LJ, Stuhlen I, Hawkesford MJ, Schnug E, Sirko A. Identification of novel proteins of Nicotiana tabacum regulated by short term sulfur starvation. Sulfur transport and assimilation in plants in the postgenomic era 2005; Leiden, The Netherlands Backhuys Publishers 153 - 156
  • Lewandowska M, Wawrzynska A, Moniuszko G, Lukomska J, Zientara K, Piecho M, et al. A Contribution to identification of novel regulators of plant response to sulfur deficiency: Characteristics of a tobacco gene UP9C, its protein product and the effects of UP9C silencing. Mol Plant 2010; 3:347 - 360; PMID: 20147370; http://dx.doi.org/10.1093/mp/ssq007
  • Myakushina YA, Milyaeva EL, Romanov GA, Nikiforova VY. Mutation in LSU4 gene affects flower development in Arabidopsis thaliana. Doklady Biochem Biophys 2009; 428:257 - 260; PMID: 20848913; http://dx.doi.org/10.1134/S16076729050093
  • Elhag GA, Thomas FJ, McCreery TP, Bourque DP. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor. Nucleic Acids Res 1992; 20:689 - 697; PMID: 1542565; http://dx.doi.org/10.1093/nar/20.4.689
  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cel 2003; 15:2497 - 2502; PMID: 14600211; http://dx.doi.org/10.1105/tpc.151140
  • Shvets E, Fass E, Scherz-Shouval R, Elazar Z. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 2008; 121:2685 - 2695; PMID: 18653543; http://dx.doi.org/10.1242/jcs.026005
  • Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 2010; 285:5941 - 5953; PMID: 20018885; http://dx.doi.org/10.1074/jbc.M109.039925
  • Lamark T, Kirkin V, Dikic I, Johansen T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 2009; 8:1986 - 1990; PMID: 19502794; http://dx.doi.org/10.4161/cc.8.13.8892
  • Hayward AP, Tsao J, Dinesh-Kumar SP. Autophagy and plant innate immunity: Defense through degradation. Semin Cell Dev Biol 2009; 20:1041 - 1047; PMID: 19406248; http://dx.doi.org/10.1016/j.semcdb.2009.04.012
  • Mitou G, Budak H, Gozuacik D. Techniques to study autophagy in plants. Int J Plant Genomics 2009; 2009:451357; PMID: 19730746; http://dx.doi.org/10.1155/2009/451357
  • Geetha T, Seibenhener ML, Chen L, Madura K, Wooten MW. p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun 2008; 374:33 - 37; PMID: 18598672; http://dx.doi.org/10.1016/j.bbrc.2008.06.082
  • Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem 2008; 283:6783 - 6789; PMID: 18174161; http://dx.doi.org/10.1074/jbc.M709496200
  • Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010; 584:1393 - 1398; PMID: 20040365; http://dx.doi.org/10.1016/j.febslet.2009.12.047
  • Lamark T, Johansen T. Autophagy: links with the proteasome. Curr Opin Cell Biol 2010; 22:192 - 198; PMID: 19962293; http://dx.doi.org/10.1016/j.ceb.2009.11.002
  • Christian F, Anthony DF, Vadrevu S, Riddell T, Day JP, McLeod R, et al. p62 (SQSTM1) and cyclic AMP phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with links to autophagy and proteasome degradation pathways. Cell Signal 2010; 22:1576 - 1596; PMID: 20600853; http://dx.doi.org/10.1016/j.cellsig.2010.06.003
  • Bassham DC. Function and regulation of macroautophagy in plants. Biochim Biophys Acta 2009; 1793:1397 - 1403; PMID: 19272302; http://dx.doi.org/10.1016/j.bbamcr.2009.01.001
  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 2007; 8:864 - 870; PMID: 17721444; http://dx.doi.org/10.1038/sj.embor.7401043
  • Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 2010; 6; PMID: 20574168; http://dx.doi.org/10.4161/auto.6.6.12510
  • Sambrook J, Frisch EF, Maniattis T. Molecular Cloning: A Laboratory Manual 1989; Cold Spring Harbor Cold Spring Harbor Laboratory Press
  • Wawrzynska A, Lewandowska M, Hawkesford MJ, Sirko A. Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit. J Exp Bot 2005; 56:1575 - 1590; PMID: 15837708; http://dx.doi.org/10.1093/jxb/eri152
  • James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 1996; 144:1425 - 1436; PMID: 8978031
  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W, Sirko A. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 2006; 57:2173 - 2182; PMID: 16720610; http://dx.doi.org/10.1093/jxb/erj176
  • Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophyls a and b of leaf extracts in different solvents. Biochem Soc Trans 1983; 11:591 - 592
  • Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005; 33:511 - 518; PMID: 15661851; http://dx.doi.org/10.1093/nar/gki198
  • Felsenstein J. PHYLIP (Phylogeny Interference Package) version 3.6 2004; Seattle Department of Genome Sciences, University of Washington Distributed by the author.
  • Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci 2000; 25:147 - 150; PMID: 10694887; http://dx.doi.org/10.1016/S0968-0004(99)01540-6
  • Horton P, Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol 1997; 5:147 - 152; PMID: 9322029
  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res 2004; 32:142 - 144; PMID: 14681379; http://dx.doi.org/10.1093/nar/gkh088
  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A. The PROSITE database, its status in 2002. Nucleic Acids Res 2002; 30:235 - 238; PMID: 11752303; http://dx.doi.org/10.1093/nar/30.1.235
  • Karimi M, Inze D, Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 2002; 7:193 - 195; PMID: 11992820; http://dx.doi.org/10.1016/S1360138502022513