914
Views
23
CrossRef citations to date
0
Altmetric
Basic Research Paper

Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway

Pages 29-46 | Received 30 Jun 2011, Accepted 15 Sep 2011, Published online: 01 Jan 2012

References

  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221:3 - 12; PMID: 20225336; http://dx.doi.org/10.1002/path.2697
  • Platini F, Perez-Tomas R, Ambrosio S, Tessitore L. Understanding autophagy in cell death control. Curr Pharm Des 2010; 16:101 - 113; PMID: 20214621; http://dx.doi.org/10.2174/138161210789941810
  • Cherra SJ, Dagda RK, Chu CT. Autophagy and Neurodegeneration: Survival at a cost?. Neuropathol Appl Neurobiol 2010; 36:125 - 132; PMID: 20202120
  • García-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC. Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol 2010; 21:691 - 698; PMID: 20188203; http://dx.doi.org/10.1016/j.semcdb.2010.02.008
  • Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010; 21:719 - 726; PMID: 20176123; http://dx.doi.org/10.1016/j.semcdb.2010.02.005
  • Wang RC, Levine B. Autophagy in cellular growth control. FEBS Lett 2010; 584:1417 - 1426; PMID: 20096689; http://dx.doi.org/10.1016/j.febslet.2010.01.009
  • Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15:344 - 357; PMID: 18804433; http://dx.doi.org/10.1016/j.devcel.2008.08.012
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132:27 - 42; PMID: 18191218; http://dx.doi.org/10.1016/j.cell.2007.12.018
  • Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 2009; 84:431 - 448; PMID: 19659885; http://dx.doi.org/10.1111/j.1469-185X.2009.00082.x
  • Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007; 6:1837 - 1849; PMID: 17671424; http://dx.doi.org/10.4161/cc.6.15.4511
  • Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 2010; 30:1049 - 1058; PMID: 19995911; http://dx.doi.org/10.1128/MCB.01344-09
  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10:458 - 467; PMID: 19491929; http://dx.doi.org/10.1038/nrm2708
  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8:931 - 937; PMID: 17712358; http://dx.doi.org/10.1038/nrm2245
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22:124 - 131; PMID: 20034776; http://dx.doi.org/10.1016/j.ceb.2009.11.014
  • Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. Methods Enzymol 2009; 453:111 - 144; PMID: 19216904; http://dx.doi.org/10.1016/S0076-6879(08)04006-8
  • Yang F, Yang YP, Mao CJ, Cao BY, Cai ZL, Shi JJ, et al. Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein. Neurosci Lett 2009; 454:203 - 208; PMID: 19429084; http://dx.doi.org/10.1016/j.neulet.2009.03.027
  • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27:19 - 40; PMID: 17311494; http://dx.doi.org/10.1146/annurev.nutr.27.061406.093749
  • Mijaljica D, Prescott M, Klionsky DJ, Devenish RJ. Autophagy and vacuole homeostasis: a case for self-degradation?. Autophagy 2007; 3:417 - 421; PMID: 17534141
  • Matsushita M, Suzuki NN, Fujioka Y, Ohsumi Y, Inagaki F. Expression, purification and crystallization of the Atg5-Atg16 complex essential for autophagy. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1021 - 1023; PMID: 17012802; http://dx.doi.org/10.1107/S1744309106036232
  • Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem 2007; 282:6763 - 6772; PMID: 17192262; http://dx.doi.org/10.1074/jbc.M609876200
  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6:304 - 312; PMID: 17396135; http://dx.doi.org/10.1038/nrd2272
  • Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 2010; 285:11061 - 11067; PMID: 20147746; http://dx.doi.org/10.1074/jbc.R109.072181
  • Zheng S, Clabough EB, Sarkar S, Futter M, Rubinsztein DC, Zeitlin SO. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 2010; 6:e1000838; PMID: 20140187; http://dx.doi.org/10.1371/journal.pgen.1000838
  • Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010; 133:93 - 104; PMID: 20007218; http://dx.doi.org/10.1093/brain/awp292
  • Rubinsztein DC. Autophagy: where next?. EMBO Rep 2010; 11:3; PMID: 20033083; http://dx.doi.org/10.1038/embor.2009.253
  • Minard KI, McAlister-Henn L. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J Biol Chem 1992; 267:17458 - 17464; PMID: 1324938
  • Minard KI, McAlister-Henn L. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae. Arch Biochem Biophys 1994; 315:302 - 309; PMID: 7986072; http://dx.doi.org/10.1006/abbi.1994.1504
  • Carlson M. Glucose repression in yeast. Curr Opin Microbiol 1999; 2:202 - 207; PMID: 10322167; http://dx.doi.org/10.1016/S1369-5274(99)80035-6
  • Holzer H. Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Celular 1989; 21:305 - 319; PMID: 2561496
  • Toyoda Y, Fujii H, Miwa I, Okuda J, Sy J. Anomeric specificity of glucose effect on cAMP, fructose 1,6-bisphosphatase, and trehalase in yeast. Biochem Biophys Res Commun 1987; 143:212 - 217; PMID: 3030316; http://dx.doi.org/10.1016/0006-291X(87)90652-8
  • Chiang HL, Schekman R. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991; 350:313 - 318; PMID: 1848921; http://dx.doi.org/10.1038/350313a0
  • Chiang HL, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 1996; 271:9934 - 9941; PMID: 8626630; http://dx.doi.org/10.1074/jbc.271.17.9934
  • Gancedo C. Inactivation of fructose-1,6-diphosphatase by glucose in yeast. J Bacteriol 1971; 107:401 - 405; PMID: 4329729
  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998; 62:334 - 361; PMID: 9618445
  • Gamo FJ, Navas MA, Blazquez MA, Gancedo C, Gancedo JM. Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and fructose-1,6-bisphosphatase-beta- galactosidase fusion proteins in Saccharomyces cerevisiae. Eur J Biochem 1994; 222:879 - 884; PMID: 8026498; http://dx.doi.org/10.1111/j.1432-1033.1994.tb18935.x
  • Horak J, Regelmann J, Wolf DH. Two distinct proteolytic systems responsible for glucose-i nduced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J Biol Chem 2002; 277:8248 - 8254; PMID: 11773046; http://dx.doi.org/10.1074/jbc.M107255200
  • Horak J, Wolf DH. The ubiquitin ligase SCF(Grr1) is required for Gal2p degradation in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 335:1185 - 1190; PMID: 16112084; http://dx.doi.org/10.1016/j.bbrc.2005.08.008
  • Riballo E, Herweijer M, Wolf DH, Lagunas R. Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 1995; 177:5622 - 5627; PMID: 7559351
  • Gadura N, Michels CA. Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 2006; 50:101 - 114; PMID: 16741702; http://dx.doi.org/10.1007/s00294-006-0080-3
  • Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, et al. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003; 14:1652 - 1663; PMID: 12686616; http://dx.doi.org/10.1091/mbc.E02-08-0456
  • Schüle T, Rose M, Entian KD, Thumm M, Wolf DH. Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 2000; 19:2161 - 2167; PMID: 10811607; http://dx.doi.org/10.1093/emboj/19.10.2161
  • Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J Biol Chem 1995; 270:26446 - 26450; PMID: 7592860
  • Schork SM, Bee G, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome. FEBS Lett 1994; 349:270 - 274; PMID: 8050580; http://dx.doi.org/10.1016/0014-5793(94)00668-7
  • Hämmerle M, Bauer J, Rose M, Szallies A, Thumm M, Dusterhus S, et al. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome- catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:25000 - 25005; PMID: 9737955; http://dx.doi.org/10.1074/jbc.273.39.25000
  • Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138 - 49150; PMID: 15358789; http://dx.doi.org/10.1074/jbc.M404544200
  • Shieh HL, Chen Y, Brown CR, Chiang HL. Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis. J Biol Chem 2001; 276:10398 - 10406; PMID: 11134048; http://dx.doi.org/10.1074/jbc.M001767200
  • Shieh HL, Chiang HL. In vitro reconstitution of glucose-induced targeting of fructose-1, 6- bisphosphatase into the vacuole in semi-intact yeast cells. J Biol Chem 1998; 273:3381 - 3387; PMID: 9452458; http://dx.doi.org/10.1074/jbc.273.6.3381
  • Huang PH, Chiang HL. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 1997; 136:803 - 810; PMID: 9049246; http://dx.doi.org/10.1083/jcb.136.4.803
  • Brown CR, McCann JA, Hung GG, Elco CP, Chiang HL. Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway. J Cell Sci 2002; 115:655 - 666; PMID: 11861771
  • Brown CR, Cui DY, Hung GG, Chiang HL. Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J Biol Chem 2001; 276:48017 - 48026; PMID: 11641409
  • Brown CR, McCann JA, Chiang HL. The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 2000; 150:65 - 76; PMID: 10893257; http://dx.doi.org/10.1083/jcb.150.1.65
  • Chiang MC, Chiang HL. Vid24p, a novel protein localized to the fructose-1, 6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J Cell Biol 1998; 140:1347 - 1356; PMID: 9508768; http://dx.doi.org/10.1083/jcb.140.6.1347
  • Brown CR, Wolfe AB, Cui D, Chiang HL. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116 - 26127; PMID: 18660504; http://dx.doi.org/10.1074/jbc.M709922200
  • Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 1995; 128:779 - 792; PMID: 7533169; http://dx.doi.org/10.1083/jcb.128.5.779
  • Brown CR, Dunton D, Chiang HL. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010; 285:1516 - 1528; PMID: 19892709; http://dx.doi.org/10.1074/jbc.M109.028241
  • Galletta BJ, Cooper JA. Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 2009; 21:20 - 27; PMID: 19186047; http://dx.doi.org/10.1016/j.ceb.2009.01.006
  • Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 2003; 115:475 - 487; PMID: 14622601; http://dx.doi.org/10.1016/S0092-8674(03)00883-3
  • Sekiya-Kawasaki M, Groen AC, Cope MJ, Kaksonen M, Watson HA, Zhang C, et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real- time chemical genetic analysis. J Cell Biol 2003; 162:765 - 772; PMID: 12952930; http://dx.doi.org/10.1083/jcb.200305077
  • Engqvist-Goldstein AE, Drubin DG. Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 2003; 19:287 - 332; PMID: 14570572; http://dx.doi.org/10.1146/annurev.cellbio.19.111401.093127
  • Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, et al. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 2008; 19:3323 - 3333; PMID: 18508925; http://dx.doi.org/10.1091/mbc.E08-03-0328
  • Snowdon C, Hlynialuk C, van der Merwe G. Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7p in Saccharomyces cerevisiae. FEMS Yeast Res 2008; 8:204 - 216; PMID: 17986252; http://dx.doi.org/10.1111/j.1567-1364.2007.00327.x
  • van der Merwe GK, Cooper TG, van Vuuren HJ. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia. J Biol Chem 2001; 276:28659 - 28666; PMID: 11356843; http://dx.doi.org/10.1074/jbc.M102280200
  • Mizuguchi M, Takashima S, Kakita A, Yamada M, Ikeda K. Lissencephaly gene product. Localization in the central nervous system and loss of immunoreactivity in Miller-Dieker syndrome. Am J Pathol 1995; 147:1142 - 1151; PMID: 7573359
  • Chong SS, Pack SD, Roschke AV, Tanigami A, Carrozzo R, Smith AC, et al. A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997; 6:147 - 155; PMID: 9063734; http://dx.doi.org/10.1093/hmg/6.2.147
  • Lo Nigro C, Chong CS, Smith AC, Dobyns WB, Carrozzo R, Ledbetter DH. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 1997; 6:157 - 164; PMID: 9063735; http://dx.doi.org/10.1093/hmg/6.2.157
  • Dobyns WB, Stratton RF, Greenberg F. Syndromes with lissencephaly. I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly. Am J Med Genet 1984; 18:509 - 526; PMID: 6476009; http://dx.doi.org/10.1002/ajmg.1320180320
  • Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, et al. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8-alpha and ARMC8beta are components of the CTLH complex. Gene 2007; 396:236 - 247; PMID: 17467196; http://dx.doi.org/10.1016/j.gene.2007.02.032
  • Tomaru K, Ueda A, Suzuki T, Kobayashi N, Yang J, Yamamoto M, et al. Armadillo Repeat Containing 8alpha Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins. Open Biochem J 2010; 4:1 - 8; PMID: 20224683; http://dx.doi.org/10.2174/1874091X01004010001
  • Kusmierczyk AR, Hochstrasser M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem 2008; 389:1143 - 1151; PMID: 18713001; http://dx.doi.org/10.1515/BC.2008.130
  • Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet 1996; 30:405 - 439; PMID: 8982460; http://dx.doi.org/10.1146/annurev.genet.30.1.405
  • Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Finley D. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 2005; 12:294 - 303; PMID: 15778719; http://dx.doi.org/10.1038/nsmb914

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.