2,930
Views
60
CrossRef citations to date
0
Altmetric
Views and Commentaries

Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome

Implications for normal aging and age-dependent neurodegenerative disorders

Pages 147-151 | Received 22 Sep 2011, Accepted 06 Oct 2011, Published online: 01 Jan 2012

References

  • Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 2006; 7:940 - 952; PMID: 17139325; http://dx.doi.org/10.1038/nrg1906
  • Korf B. Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina. N Engl J Med 2008; 358:552 - 555; PMID: 18256390; http://dx.doi.org/10.1056/NEJMp0800071
  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 2008; 358:592 - 604; PMID: 18256394; http://dx.doi.org/10.1056/NEJMoa0706898
  • Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003; 423:293 - 298; PMID: 12714972; http://dx.doi.org/10.1038/nature01629
  • Beck LA, Hosick TJ, Sinensky M. Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol 1990; 110:1489 - 1499; PMID: 2335559; http://dx.doi.org/10.1083/jcb.110.5.1489
  • Pendás AM, Zhou Z, Cadinanos J, et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 2002; 31:94 - 99; PMID: 11923874
  • Lutz RJ, Trujillo MA, Denham KS, Wenger L, Sinensky M. Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proc Natl Acad Sci USA 1992; 89:3000 - 3004; PMID: 1557405; http://dx.doi.org/10.1073/pnas.89.7.3000
  • Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2004; 101:8963 - 8968; PMID: 15184648; http://dx.doi.org/10.1073/pnas.0402943101
  • Capell BC, Olive M, Erdos MR, et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 2008; 105:15902 - 15907; PMID: 18838683; http://dx.doi.org/10.1073/pnas.0807840105
  • Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 2002; 99:13049 - 13054; PMID: 12235369; http://dx.doi.org/10.1073/pnas.192460799
  • Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 2003; 12:1995 - 2001; PMID: 12913070; http://dx.doi.org/10.1093/hmg/ddg213
  • Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 1990; 62:81 - 88; PMID: 2194674; http://dx.doi.org/10.1016/0092-8674(90)90242-7
  • Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2005; 102:12879 - 12884; PMID: 16129833; http://dx.doi.org/10.1073/pnas.0506001102
  • Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 2005; 102:10291 - 10296; PMID: 16014412; http://dx.doi.org/10.1073/pnas.0504641102
  • Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 2006; 311:1621 - 1623; PMID: 16484451; http://dx.doi.org/10.1126/science.1124875
  • Moskalev AA, Shaposhnikov MV. Pharmacological inhibition of phosphoinositide 3 and TOR kinases improves survival of Drosophila melanogaster. Rejuvenation Res 2010; 13:246 - 247; PMID: 20017609; http://dx.doi.org/10.1089/rej.2009.0903
  • Bjedov I, Toivonen JM, Kerr F, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 2010; 11:35 - 46; PMID: 20074526; http://dx.doi.org/10.1016/j.cmet.2009.11.010
  • Miller RA, Harrison DE, Astle CM, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 2011; 66:191 - 201; PMID: 20974732; http://dx.doi.org/10.1093/gerona/glq178
  • Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460:392 - 395; PMID: 19587680
  • Alvers AL, Fishwick LK, Wood MS, et al. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 2009; 8:353 - 369; PMID: 19302372; http://dx.doi.org/10.1111/j.1474-9726.2009.00469.x
  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24; PMID: 18282106; http://dx.doi.org/10.1371/journal.pgen.0040024
  • Cao K, Graziotto JJ, Blair CD, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 2011; 3:89ra58; PMID: 21715679; http://dx.doi.org/10.1126/scitranslmed.3002346
  • Tan JM, Wong ES, Kirkpatrick DS, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 2008; 17:431 - 439; PMID: 17981811; http://dx.doi.org/10.1093/hmg/ddm320
  • Belzile JP, Richard J, Rougeau N, Xiao Y, Cohen EA. HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. J Virol 2010; 84:3320 - 3330; PMID: 20089662; http://dx.doi.org/10.1128/JVI.02590-09
  • Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009; 10:659 - 671; PMID: 19773779; http://dx.doi.org/10.1038/nrm2767
  • Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149 - 1163; PMID: 18083104; http://dx.doi.org/10.1016/j.cell.2007.10.035
  • Jeong H, Then F, Melia TJ Jr., et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009; 137:60 - 72; PMID: 19345187; http://dx.doi.org/10.1016/j.cell.2009.03.018
  • Filimonenko M, Isakson P, Finley KD, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38:265 - 279; PMID: 20417604; http://dx.doi.org/10.1016/j.molcel.2010.04.007
  • Mueller MA, Beutner F, Teupser D, Ceglarek U, Thiery J. Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR-/- mice despite severe hypercholesterolemia. Atherosclerosis 2008; 198:39 - 48; PMID: 17980369; http://dx.doi.org/10.1016/j.atherosclerosis.2007.09.019
  • Elloso MM, Azrolan N, Sehgal SN, et al. Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apo E-deficient mice. Am J Transplant 2003; 3:562 - 569; PMID: 12752312; http://dx.doi.org/10.1034/j.1600-6143.2003.00094.x
  • Waksman R, Pakala R, Burnett MS, et al. Oral rapamycin inhibits growth of atherosclerotic plaque in apoE knock-out mice. Cardiovasc Radiat Med 2003; 4:34 - 38; PMID: 12892771; http://dx.doi.org/10.1016/S1522-1865(03)00121-5
  • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002; 11:1107 - 1117; PMID: 11978769; http://dx.doi.org/10.1093/hmg/11.9.1107
  • Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36:585 - 595; PMID: 15146184; http://dx.doi.org/10.1038/ng1362
  • Rose C, Menzies FM, Renna M, et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010; 19:2144 - 2153; PMID: 20190273; http://dx.doi.org/10.1093/hmg/ddq093
  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006; 443:780 - 786; PMID: 17051204; http://dx.doi.org/10.1038/nature05291
  • Zemke D, Azhar S, Majid A. The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect 2007; 20:495 - 499; PMID: 18080036; http://dx.doi.org/10.1358/dnp.2007.20.8.1157618
  • Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 2007; 3:331 - 338; PMID: 17486044; http://dx.doi.org/10.1038/nchembio883
  • Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006; 15:433 - 442; PMID: 16368705; http://dx.doi.org/10.1093/hmg/ddi458
  • Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 2009; 164:541 - 551; PMID: 19682553; http://dx.doi.org/10.1016/j.neuroscience.2009.08.014
  • Mazzulli JR, Xu YH, Sun Y, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011; 146:37 - 52; PMID: 21700325; http://dx.doi.org/10.1016/j.cell.2011.06.001
  • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007; 282:5641 - 5652; PMID: 17182613; http://dx.doi.org/10.1074/jbc.M609532200
  • Crews L, Spencer B, Desplats P, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE 2010; 5:e9313; PMID: 20174468; http://dx.doi.org/10.1371/journal.pone.0009313
  • Dehay B, Bove J, Rodriguez-Muela N, et al. Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 2010; 30:12535 - 12544; PMID: 20844148; http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010
  • Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285:13107 - 13120; PMID: 20178983; http://dx.doi.org/10.1074/jbc.M110.100420
  • Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS ONE 2010; 5:e9979; PMID: 20376313; http://dx.doi.org/10.1371/journal.pone.0009979
  • Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006; 312:1059 - 1063; PMID: 16645051; http://dx.doi.org/10.1126/science.1127168
  • McClintock D, Ratner D, Lokuge M, et al. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS ONE 2007; 2:e1269; PMID: 18060063; http://dx.doi.org/10.1371/journal.pone.0001269
  • Olive M, Harten I, Mitchell R, et al. Cardiovascular pathology in hutchinson-gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 2010; 30:2301 - 2309; PMID: 20798379; http://dx.doi.org/10.1161/ATVBAHA.110.209460
  • Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10:452 - 459; PMID: 18311132; http://dx.doi.org/10.1038/ncb1708
  • Cao K, Blair CD, Faddah DA, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 2011; 121:2833 - 2844; PMID: 21670498; http://dx.doi.org/10.1172/JCI43578
  • Benson EK, Lee SW, Aaronson SA. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 2010; 123:2605 - 2612; PMID: 20605919; http://dx.doi.org/10.1242/jcs.067306
  • Ekberg H, Bernasconi C, Noldeke J, et al. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the Symphony study. Nephrol Dial Transplant 2010; 25:2004 - 2010; PMID: 20106825; http://dx.doi.org/10.1093/ndt/gfp778
  • Baur B, Oroszlan M, Hess O, Carrel T, Mohacsi P. Efficacy and safety of sirolimus and everolimus in heart transplant patients: a retrospective analysis. Transplant Proc 2011; 43:1853 - 1861; PMID: 21693289; http://dx.doi.org/10.1016/j.transproceed.2011.01.174
  • Rehm B, Keller F, Mayer J, Stracke S. Resolution of sirolimus-induced pneumonitis after conversion to everolimus. Transplant Proc 2006; 38:711 - 713; PMID: 16647451; http://dx.doi.org/10.1016/j.transproceed.2006.01.052
  • González D, Garcia CD, Azocar M, et al. Growth of kidney-transplanted pediatric patients treated with sirolimus. Pediatr Nephrol 2011; 26:961 - 966; PMID: 21380626; http://dx.doi.org/10.1007/s00467-011-1811-3
  • Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101 - 1111; PMID: 16186256; http://dx.doi.org/10.1083/jcb.200504035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.