4,759
Views
143
CrossRef citations to date
0
Altmetric
Review

Bacteriophages and dairy fermentations

, &
Pages 149-158 | Published online: 19 Dec 2012

References

  • Carminati D, Giraffa G, Quiberoni A, Binetti A, Suárez V, Reinheimer J. Advances and trends in starter cultures for dairy fermentations. In: Mozzi F, Raya R, Vignolo G, eds. Biotechnology of lactic acid bacteria: Novel applications. Iowa, USA: Wiley-Blackwell 2010; 177-192.
  • Emond E, Moineau S. Bacteriophages and food fermentations. In: McGrath S, van Sinderen D, eds. Bacteriophage: Genetics and Molecular Biology. Horizon Scientific Press/Caister Academic Press 2007; 93-124.
  • Moineau S. Applications of phage resistance in lactic acid bacteria. Antonie Van Leeuwenhoek 1999; 76:377 - 82; http://dx.doi.org/10.1023/A:1002045701064; PMID: 10532393
  • Madera C, Monjardín C, Suárez JE. Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. Appl Environ Microbiol 2004; 70:7365 - 71; http://dx.doi.org/10.1128/AEM.70.12.7365-7371.2004; PMID: 15574937
  • Suárez VB, Capra ML, Rivera M, Reinheimer JA. Inactivation of calcium-dependent lactic acid bacteria phages by phosphates. J Food Prot 2007; 70:1518 - 22; PMID: 17612087
  • Surono S, Hosono A. Starter cultures. In: Fuquay J, Fox P, McSweeney, P, eds. Encyclopedia of dairy science 2° Edition (Volume 2), Academic Press, Elsevier Science, USA 2011; 477-482.
  • Suárez V, Reinheimer J, Quiberoni A. Bacteriophages in dairy plants. In: Quiberoni A, Reinheimer J, eds. Bacteriophages in dairy processing, Nova Science Publishers, 2012; pp. 53-78.
  • Mäyrä-Mäkinen A, Bigret M. Industrial use and production of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A, eds. Lactic acid bacteria: microbiological and functional aspects, 3° Edition, New York, Marcel Dekker, Inc. 2004; 175-198.
  • Nath KR, Wagner BJ. Stimulation of lactic acid bacteria by a micrococcus isolate: evidence for multiple effects. Appl Microbiol 1973; 26:49 - 55; PMID: 4199337
  • Ringø E, Bendiksen HR, Gausen SJ, Sundsfjord A, Olsen RE. The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). J Appl Microbiol 1998; 85:855 - 64; http://dx.doi.org/10.1046/j.1365-2672.1998.00595.x; PMID: 9830121
  • Quiberoni A, Suárez VB, Binetti AG, Reinheimer JA. Bacteriophage. In: Fuquay J, Fox P, McSweeney P, eds. Encyclopedia of dairy science 2° Edition (Volume 1), Academic Press, Elsevier Science, USA 2011; 430-438.
  • Quiberoni A, Moineau S, Rousseau GM, Reinheimer J, Ackermann H-W. Streptococcus thermophilus bacteriophages. [Review] Int Dairy J 2010; 20:657 - 64; http://dx.doi.org/10.1016/j.idairyj.2010.03.012
  • Brüssow H, Suarez JE. Lactobacillus phages. In: Calendar R, Abedon ST, eds. The bacteriophages, 2° Edition, Oxford University Press, New York 2006.
  • Villion M, Moineau S. Bacteriophages of lactobacillus.. Front Biosci 2009; 14:1661 - 83; http://dx.doi.org/10.2741/3332; PMID: 19273154
  • Capra ML, Binetti AG, Mercanti DJ, Quiberoni A, Reinheimer JA. Diversity among Lactobacillus paracasei phages isolated from a probiotic dairy product plant. J Appl Microbiol 2009; a 107:1350 - 7; http://dx.doi.org/10.1111/j.1365-2672.2009.04313.x; PMID: 19486389
  • Quiberoni A, Suárez VB, Reinheimer JA. Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. J Food Prot 1999; 62:894 - 8; PMID: 10456743
  • Binetti AG, Reinheimer JA. Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants. J Food Prot 2000; 63:509 - 15; PMID: 10772217
  • Suárez VB, Reinheimer JA. Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages. J Food Prot 2002; 65:1756 - 9; PMID: 12430698
  • Quiberoni A, Guglielmotti DM, Reinheimer JA. Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int J Food Microbiol 2003; 84:51 - 62; http://dx.doi.org/10.1016/S0168-1605(02)00394-X; PMID: 12781954
  • Capra ML, Quiberoni A, Reinheimer JA. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol 2004; 38:499 - 504; http://dx.doi.org/10.1111/j.1472-765X.2004.01525.x; PMID: 15130146
  • Moineau S, Lévesque C. Control of bacteriophages in industrial fermentations. In: Kutter E, Sulakvelidze A, eds. Bacteriophages: biology and applications. CRC Press, Boca Raton, FL 2005; 285-296.
  • Atamer Z, Dietrich J, Müller-Merbach M, Neve H, Heller KJ, Hinrichs J. Screening for and characterization of Lactococcus lactis bacteriophages with high thermal resistance. Int Dairy J 2009; 19:228 - 35; http://dx.doi.org/10.1016/j.idairyj.2008.10.012
  • Briggiler Marcó M, De Antoni GL, Reinheimer JA, Quiberoni A. Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages. J Food Prot 2009; 72:1012 - 9; PMID: 19517728
  • Chopin MC. Resistance of 17 mesophilic lactic Streptococcus bacteriophages to pasteurization and spray-drying. J Dairy Res 1980; 47:131 - 9; http://dx.doi.org/10.1017/S0022029900020963; PMID: 6768773
  • Müller-Merbach M, Neve H, Hinrichs J. Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008. J Dairy Res 2005; a 72:281 - 6; http://dx.doi.org/10.1017/S0022029905000725; PMID: 16174358
  • Abedon TS. Bacteriophage ecology: Population growth, evolution, and impact of bacterial viruses. Cambridge, UK: Cambridge University Press 2008; 302-332.
  • McIntyre K, Heap HA, Davey GP, Limsowtin KY. The distribution of lactococcal bacteriophage in the environment of a cheese manufacturing plant. Int Dairy J 1991; 1:183 - 97; http://dx.doi.org/10.1016/0958-6946(91)90010-6
  • Brüssow H, Fremont M, Bruttin A, Sidoti J, Constable A, Fryder V. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl Environ Microbiol 1994; 60:4537 - 43; PMID: 7811089
  • Bruttin A, Desiere F, d’Amico N, Guérin J-P, Sidoti J, Huni B, et al. Molecular ecology of Streptococcus thermophilus bacteriophage infections in a cheese factory. Appl Environ Microbiol 1997; 63:3144 - 50; PMID: 9251202
  • Atamer Z, Ali Y, Neve H, Heller KJ, Hinrichs J. Thermal resistance of bacteriophages attacking flavor-producing dairy Leuconostoc starter cultures. Int Dairy J 2011; 21:327 - 34; http://dx.doi.org/10.1016/j.idairyj.2010.11.005
  • Neve H, Kemper U, Geis A, Heller KJ. Monitoring and characterization of lactococcal bacteriophages in a dairy plant. Kieler Milchw Forsch 1994; 46:167 - 78
  • Neve H, Dietrich J, Heller KJ. A short note on long-term stability of Lactococcus lactis bacteriophages in cheese brine. Kieler Milchwirtschaftliche Forschungsberichte 2005; 57:191 - 200
  • Verreault D, Gendron L, Rousseau GM, Veillette M, Massé D, Lindsley WG, et al. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants. Appl Environ Microbiol 2011; 77:491 - 7; http://dx.doi.org/10.1128/AEM.01391-10; PMID: 21115712
  • Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses. Microbiol Mol Biol Rev 2008; 72:413 - 44; http://dx.doi.org/10.1128/MMBR.00002-08; PMID: 18772283
  • Briggiler Marcó M, Quiberoni A, Negro AC, Reinheimer JA, Alfano OM. Evaluation of the photocatalytic inactivation efficiency of dairy bacteriophages. Chem Eng J 2011; 172:987 - 93; http://dx.doi.org/10.1016/j.cej.2011.07.012
  • Kosikowski FV. Whey utilization and whey products. J Dairy Sci 1979; 62:1149 - 60; http://dx.doi.org/10.3168/jds.S0022-0302(79)83389-5
  • Brown RJ, Ernstrom CA. Incorporation of ultrafiltration concentrated whey solids into Cheddar cheese for increased yield. J Dairy Sci 1982; 65:2391 - 5; http://dx.doi.org/10.3168/jds.S0022-0302(82)82514-9
  • Matthews ME. Whey protein recovery process and products. J Dairy Sci 1984; 67:2680 - 92; http://dx.doi.org/10.3168/jds.S0022-0302(84)81626-4
  • Punidadas P, Feirtag J, Tung MA. Incorporating whey proteins into mozzarella cheese. Int J Dairy Technol 1999; 52:51 - 5; http://dx.doi.org/10.1111/j.1471-0307.1999.tb02070.x
  • Hinrichs J. Incorporation of whey proteins in cheese. Int Dairy J 2001; 11:495 - 503; http://dx.doi.org/10.1016/S0958-6946(01)00071-1
  • Atamer Z, Dietrich J, Neve H, Heller KJ, Hinrichs J. Influence of the suspension media on the thermal treatment of mesophilic lactococcal bacteriophages. Int Dairy J 2010; 20:408 - 14; http://dx.doi.org/10.1016/j.idairyj.2009.12.014
  • Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238 - 76; http://dx.doi.org/10.1128/MMBR.67.2.238-276.2003; PMID: 12794192
  • Séchaud L, Cluzel PJ, Rousseau M, Baumgartner A, Accolas JP. Bacteriophages of lactobacilli. Biochimie 1988; 70:401 - 10; http://dx.doi.org/10.1016/0300-9084(88)90214-3; PMID: 3139059
  • Davidson BE, Powell IB, Hillier AJ. Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol Rev 1990; 7:79 - 90; PMID: 2271226
  • Séchaud L, Rousseau M, Fayard B, Callegari ML, Quénée P, Accolas J-P. Comparative study of 35 bacteriophages of Lactobacillus helveticus: morphology and host range. Appl Environ Microbiol 1992; 58:1011 - 8; PMID: 16348661
  • Carminati D, Mazzucotelli L, Giraffa G, Neviani E. Incidence of inducible bacteriophage in Lactobacillus helveticus strains isolated from natural whey starter cultures. J Dairy Sci 1997; 80:1505 - 11; http://dx.doi.org/10.3168/jds.S0022-0302(97)76079-X
  • Josephsen J, Neve H. Bacteriophages and lactic acid bacteria. In: Salminen S, von Wright A, eds. Lactic Acid Bacteria. Microbiology and Functional Aspects. New York, USA: Marcel Dekker Inc. 1998; 385-436.
  • Ventura M, Zomer A, Canchaya C, O’Connell-Motherway M, Kuipers O, Turroni F, et al. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains. Appl Environ Microbiol 2007; 73:7771 - 80; http://dx.doi.org/10.1128/AEM.01273-07; PMID: 17933937
  • Suárez V, Zago M, Quiberoni A, Carminati D, Giraffa G, Reinheimer J. Lysogeny in Lactobacillus delbrueckii strains and characterization of two new temperate prolate-headed bacteriophages. J Appl Microbiol 2008; 105:1402 - 11; http://dx.doi.org/10.1111/j.1365-2672.2008.03876.x; PMID: 18713281
  • Sun X, Van Sinderen D, Moineau S, Heller KJ. Impact of lysogeny on bacteria with a focus on Lactic Acid Bacteria. In: Adams HT, ed. Contemporary Trends in Bacteriophage Research. New York, United States: Nova Science Publishers, Inc. 2009; 309-336.
  • Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 2011; 144:503 - 10; http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.009; PMID: 21131090
  • Capra ML, Mercanti DJ, Reinheimer JA, Quiberoni AL. Characterisation of three temperate phages released from the same Lactobacillus paracasei commercial strain. Int J Dairy Technol 2010; 63:396 - 405; http://dx.doi.org/10.1111/j.1471-0307.2010.00600.x
  • Durmaz E, Miller MJ, Azcarate-Peril MA, Toon SP, Klaenhammer TR. Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 2008; 74:4601 - 9; http://dx.doi.org/10.1128/AEM.00010-08; PMID: 18539811
  • Shimizu-Kadota M, Kiwaki M, Hirokawa H, Tsuchida N. ISL1: a new transposable element in Lactobacillus casei.. Mol Gen Genet 1985; 200:193 - 8; http://dx.doi.org/10.1007/BF00425423; PMID: 2993817
  • Moineau S, Pandian S, Klaenhammer TR. Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl Environ Microbiol 1994; 60:1832 - 41; PMID: 16349277
  • Bouchard JD, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 2000; 270:65 - 75; http://dx.doi.org/10.1006/viro.2000.0226; PMID: 10772980
  • Shimizu-Kadota M, Kiwaki M, Sawaki S, Shirasawa Y, Shibahara-Sone H, Sako T. Insertion of bacteriophage phiFSW into the chromosome of Lactobacillus casei strain Shirota (S-1): characterization of the attachment sites and the integrase gene. Gene 2000; 249:127 - 34; http://dx.doi.org/10.1016/S0378-1119(00)00154-2; PMID: 10831846
  • Labrie SJ, Moineau S. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J Bacteriol 2007; 189:1482 - 7; http://dx.doi.org/10.1128/JB.01111-06; PMID: 17041060
  • Lortal S, Chapot-Chartier MP. Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 2005; 15:857 - 71; http://dx.doi.org/10.1016/j.idairyj.2004.08.024
  • Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127 - 81; http://dx.doi.org/10.1016/j.femsre.2003.08.001; PMID: 15109783
  • Ackermann H-W. 5500 Phages examined in the electron microscope. Arch Virol 2007; 152:227 - 43; http://dx.doi.org/10.1007/s00705-006-0849-1; PMID: 17051420
  • Dupuis M-E, Moineau S. Genome organization and characterization of the virulent lactococcal phage 1358 and its similarities to Listeria phages. Appl Environ Microbiol 2010; 76:1623 - 32; http://dx.doi.org/10.1128/AEM.02173-09; PMID: 20061452
  • Samson JE, Moineau S. Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages. Appl Environ Microbiol 2010; 76:6843 - 52; http://dx.doi.org/10.1128/AEM.00796-10; PMID: 20802084
  • Mata M, Trautwetter A, Luthaud G, Ritzenthaler P. Thirteen virulent and temperate bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis belong to a single DNA homology group. Appl Environ Microbiol 1986; 52:812 - 8; PMID: 16347174
  • Desiere F, Lucchini S, Canchaya C, Ventura M, Brüssow H. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 2002; 82:73 - 91; http://dx.doi.org/10.1023/A:1020676825358; PMID: 12369206
  • Nelson D. Phage taxonomy: we agree to disagree. J Bacteriol 2004; 186:7029 - 31; http://dx.doi.org/10.1128/JB.186.21.7029-7031.2004; PMID: 15489416
  • Le Marrec C, van Sinderen D, Walsh L, Stanley E, Vlegels E, Moineau S, et al. Streptococcus thermophilus bacteriophages can be divided into two distinct groups based on mode of packaging and structural protein composition. Appl Environ Microbiol 2007; 63:3246 - 53
  • Mills S, Griffin C, O’ Sullivan O, Coffey A, McAuliffe OE, Meijer WC, et al. A new phage on the ‘Mozzarella’ block: bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int Dairy J 2011; http://dx.doi.org/10.1016/j.idairyj.2011.06.003
  • Brüssow H, Kutter E. Phage ecology. In: Kutter E, Sulakvelidze A, eds. Bacteriophages. Biology and applications. Boca Raton, FL, USA: CRC Press. 2005; 129-163.
  • Quiberoni A, Tremblay D, Ackermann H-W, Moineau S, Reinheimer JA. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina. J Dairy Sci 2006; 89:3791 - 9; http://dx.doi.org/10.3168/jds.S0022-0302(06)72420-1; PMID: 16960053
  • Sozzi T, Poulin JM, Maret R, Pousaz R. Isolation of a bacteriophage of Leuconostoc mesenteroides from dairy produce. J Appl Bacteriol 1978; 44:159 - 61; http://dx.doi.org/10.1111/j.1365-2672.1978.tb00787.x
  • Shin C. Some characteristics of Leuconostoc cremoris bacteriophage isolated from blue cheese. Jpn J Zootech Sci 1983; 54:481 - 6
  • Saxelin ML, Nurmiaho-Lassila EL, Meriläinen VT, Forsén RI. Ultrastructure and host specificity of bacteriophages of Streptooccus cremoris, Streptococcus lactis subsp, diacetylatis and Leuconostoc cremoris from finnish fermented milk. Appl Environ Microbiol 1986; 52:771 - 7; PMID: 16347170
  • Davey GP, Ward LJH, Brown JCS. Characterisation of four Leuconostoc bacteriophages isolated from dairy fermentations. FEMS Microbiol Lett 1995; 128:21 - 5; http://dx.doi.org/10.1111/j.1574-6968.1995.tb07494.x
  • Boizet B, Mata M, Mignot O, Ritzenthaler P, Sozzi T. Taxonomic characterization of Leuconostoc mesenteroides and Leuconostoc oenos bacteriophage. FEMS Microbiol Lett 1992; 90:211 - 6; http://dx.doi.org/10.1111/j.1574-6968.1992.tb05154.x
  • Barrangou R, Yoon SS, Breidt Jr F Jr., Fleming HP, Klaenhammer TR. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Appl Environ Microbiol 2002; 68:5452 - 8; http://dx.doi.org/10.1128/AEM.68.11.5452-5458.2002; PMID: 12406737
  • Lu Z, Altermann E, Breidt F, Kozyavkin S. Sequence analysis of Leuconostoc mesenteroides bacteriophage Phi1-A4 isolated from an industrial vegetable fermentation. Appl Environ Microbiol 2010; 76:1955 - 66; http://dx.doi.org/10.1128/AEM.02126-09; PMID: 20118355
  • Sturino JM, Klaenhammer TR. Bacteriophage defense systems and strategies for lactic acid bacteria. Adv Appl Microbiol 2004; 56:331 - 78; http://dx.doi.org/10.1016/S0065-2164(04)56011-2; PMID: 15566985
  • Binetti A, Reinheimer JA, Álvarez MA. Dairy bacteriophages and bacteriophage resistance. In: Mayo B, López P, Gaspar Pérez-Martínez G, eds. Molecular aspects of Lactic Acid Bacteria for traditional and new applications. Research Signpost, Kerala, India 2008:209-234.
  • del Río B, Martín MC, Martínez N, Magadán AH, Alvarez MA. Multiplex Fast Real-Time Polymerase Chain Reaction for quantitative detection and identification of cos and pac Streptococcus thermophilus bacteriophages. Appl Environ Microbiol 2008; 74:4779 - 81; http://dx.doi.org/10.1128/AEM.00295-08; PMID: 18539804
  • Martín MC, del Rio B, Martínez N, Magadán AH, Alvarez MA. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk. Food Microbiol 2008; 25:978 - 82; http://dx.doi.org/10.1016/j.fm.2008.07.004; PMID: 18954733
  • Ly-Chatain MH, Durand L, Rigobello V, Vera A, Demarigny Y. Direct quantitative detection and identification of Lactococcal bacteriophages from milk and whey by Real-Time PCR: Application for the detection of Lactococcal bacteriophages in goat’s raw milk whey in France. Int J Microbiol 2011; 2011:594369; http://dx.doi.org/10.1155/2011/594369; PMID: 22013446
  • Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 2011; 10:Suppl 1 S20; http://dx.doi.org/10.1186/1475-2859-10-S1-S20; PMID: 21995802
  • IDF. Starters in the manufacture of cheese. Bulletin 129 of the International Dairy Federation Brussels: International Dairy Federation1980; 4-21.
  • Steenson LR, Klaenhammer TR. Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Appl Environ Microbiol 1985; 50:851 - 8; PMID: 3002270
  • Michelsen O, Cuesta-Dominguez A, Albrechtsen B, Jensen PR. Detection of bacteriophage-infected cells of Lactococcus lactis by using flow cytometry. Appl Environ Microbiol 2007; 73:7575 - 81; http://dx.doi.org/10.1128/AEM.01219-07; PMID: 17921265
  • IDF. Practical phage control. Bulletin 263 of the International Dairy Federation Brussels: International Dairy Federation 1991; 29-39.
  • García-Aljaro C, Muñoz-Berbel X, Muñoz FJ. On-chip impedimetric detection of bacteriophages in dairy samples. Biosens Bioelectron 2009; 24:1712 - 6; http://dx.doi.org/10.1016/j.bios.2008.08.047; PMID: 18926694
  • Zago M, Scaltriti E, Fornasari ME, Rivetti C, Grolli S, Giraffa G, et al. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.. J Microbiol Methods 2012; 88:41 - 6; http://dx.doi.org/10.1016/j.mimet.2011.10.006; PMID: 22024504
  • Coffey A, Ross RP. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 2002; 82:303 - 21; http://dx.doi.org/10.1023/A:1020639717181; PMID: 12369198
  • Moineau S, Tremblay D, Labrie S. Phages of lactic acid bacteria: from genomics to industrial applications. ASM News 2002; 68:388 - 93
  • Heap HA, Harnett JT. Bacteriophage in the dairy industry. In: Roginski H, Fuquay JW, Fox PF, eds. Encyclopedia of dairy sciences. Academic Press, Elsevier Science, USA 2003; 36-142.
  • Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni AdelL. Review: efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front Microbiol 2011; 2:282; PMID: 22275912
  • Ebrecht AC, Guglielmotti DM, Tremmel G, Reinheimer JA, Suárez VB. Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance. Food Microbiol 2010; 27:515 - 20; http://dx.doi.org/10.1016/j.fm.2009.12.012; PMID: 20417401
  • Mercanti DJ, Guglielmotti DM, Patrignani F, Reinheimer JA, Quiberoni A. Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application. Food Microbiol 2012; 29:99 - 104; http://dx.doi.org/10.1016/j.fm.2011.09.003; PMID: 22029923
  • Kakita Y, Obuchi E, Nakano K, Murata K, Kuroiwa A, Miake F, et al. Photocatalytic inactivation of Lactobacillus PL-1 phage by a thin of titania. Biocontrol Sci 2000; 5:73 - 9; http://dx.doi.org/10.4265/bio.5.73
  • Kashige N, Kakita Y, Nakashima Y, Miake F, Watanabe K. Mechanism of the photocatalytic inactivation of Lactobacillus casei phage PL-1 by titania thin film. Curr Microbiol 2001; 42:184 - 9; http://dx.doi.org/10.1007/s002840010201; PMID: 11270652
  • Koziumi Y, Taya M. Kinetic evaluation of biocidal activity of titanium dioxide against phage MS-2 considering interaction between the phage and photocatalyst particles. Biochem Eng J 2002; 12:107 - 16; http://dx.doi.org/10.1016/S1369-703X(02)00046-3
  • Kühn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag HG, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 2003; 53:71 - 7; http://dx.doi.org/10.1016/S0045-6535(03)00362-X; PMID: 12892668
  • Cho M, Chung H, Choi W, Yoon J. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 2005; 71:270 - 5; http://dx.doi.org/10.1128/AEM.71.1.270-275.2005; PMID: 15640197
  • Pal A, Pehkonen SO, Yu LE, Ray MB. Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. J Photochem Photobiol A 2007; 186:335 - 41; http://dx.doi.org/10.1016/j.jphotochem.2006.09.002
  • Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, et al. Photocatalytic antimicrobial activity of thin surface films of TiO(2), CuO and TiO (2)/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 2008; 79:127 - 33; http://dx.doi.org/10.1007/s00253-008-1411-8; PMID: 18317747
  • Zacarías SM, Vaccari MC, Alfano OM, Irazoqui HA, Imoberdorf GE. Effect of the radiation flux on the photocatalytic inactivation of spores of Bacillus subtilis.. J Photochem Photobiol A 2010; 214:171 - 80; http://dx.doi.org/10.1016/j.jphotochem.2010.06.021
  • Kover Synergy. UV Sterile Air System. Available at: http://www.koveritalia.com/uv_steril_air_system.htm; 2012.
  • Novapure. Air Titan Air Purifiers. Available at: http://www.morphicenvirotech.com/novapure/; 2012.
  • Atamer Z, Hinrichs J. Thermal inactivation of the heat-resistant Lactococcus lactis bacteriophage P680 in modern cheese processing. Int Dairy J 2010; 20:163 - 8; http://dx.doi.org/10.1016/j.idairyj.2009.09.006
  • Moroni O, Jean J, Autret J, Fliss I. Inactivation of lactococcal bacteriophages in liquid media using dynamic high pressure. Int Dairy J 2002; 12:907 - 13; http://dx.doi.org/10.1016/S0958-6946(02)00118-8
  • Diels AMJ, Michiels CW. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 2006; 32:201 - 16; http://dx.doi.org/10.1080/10408410601023516; PMID: 17123905
  • Capra ML, Patrignani F, Quiberoni A, Reinheimer JA, Lanciotti R, Guerzoni ME. Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. Int Dairy J 2009; b 19:336 - 41; http://dx.doi.org/10.1016/j.idairyj.2008.11.002
  • D’Souza DH, Su X, Roach A, Harte F. High-pressure homogenization for the inactivation of human enteric virus surrogates. J Food Prot 2009; 72:2418 - 22; PMID: 19903411
  • Patterson MF. Microbiology of pressure-treated foods. J Appl Microbiol 2005; 98:1400 - 9; http://dx.doi.org/10.1111/j.1365-2672.2005.02564.x; PMID: 15916652
  • Müller-Merbach M, Rauscher T, Hinrichs J. Inactivation of bacteriophages by thermal and high-pressure treatment. Int Dairy J 2005; b 15:777 - 84; http://dx.doi.org/10.1016/j.idairyj.2004.08.019
  • Lyne J. Technological importance in the dairy industry. In: Fuquay J, Fox P, McSweeney P, eds. Enclyclopedia of dairy science, 2° Edition (Volume 1), Academic Press, Elsevier Science, USA 2011; 439-444.
  • Hicks CL, Clark-Safko PA, Surjawan I, O’Leary J. Use of bacteriophage derived peptides to delay phage infections. Food Res Int 2004; 37:115 - 22; http://dx.doi.org/10.1016/j.foodres.2003.09.009
  • Bissonnette F, Labrie S, Deveau H, Lamoureux M, Moineau S. Characterization of mesophilic mixed starter cultures used for the manufacture of aged cheddar cheese. J Dairy Sci 2000; 83:620 - 7; http://dx.doi.org/10.3168/jds.S0022-0302(00)74921-6; PMID: 10791775
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8:317 - 27; http://dx.doi.org/10.1038/nrmicro2315; PMID: 20348932
  • Klaenhammer TR, Fitzgerald GF. Bacteriophage and bacteriophage-resistance. In: Gasson MJ, de Vos WM, eds. Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic and Professional, Glasgow 1994; 106-168.
  • Limsowtin GKV, Terzaghi BE. Phage resistant mutants: their selection and use in cheese factories. NZ J Dairy Sci Tech 1976; 11:251 - 6
  • Weimer BC, Blake M, Hillier AJ, Davidson BE. Studies on the isolation of phage-resistant derivatives of Lactococcus lactis subsp. cremoris FG2 with phage sk1. Aust J Dairy Technol 1993; 48:59 - 61
  • Viscardi M, Capparelli R, Di Matteo R, Carminati D, Giraffa G, Iannelli D. Selection of bacteriophage-resistant mutants of Streptococcus thermophilus.. J Microbiol Methods 2003; 55:109 - 19; http://dx.doi.org/10.1016/S0167-7012(03)00146-5; PMID: 14500002
  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709 - 12; http://dx.doi.org/10.1126/science.1138140; PMID: 17379808
  • Binetti AG, Bailo NB, Reinheimer JA. Spontaneous phage-resistant mutants of Streptococcus thermophilus: Isolation and technological characteristics. Int Dairy J 2007; a 17:343 - 9; http://dx.doi.org/10.1016/j.idairyj.2006.05.002
  • Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.. J Bacteriol 2008; 190:1390 - 400; http://dx.doi.org/10.1128/JB.01412-07; PMID: 18065545
  • Neviani E, Carminati D, Girafa G. Selection of some bacteriophages- and lysozyme-resistant variants of Lactobacillus helveticus CNRZ 892. J Dairy Sci 1992; 75:905 - 13; http://dx.doi.org/10.3168/jds.S0022-0302(92)77830-8
  • Carminatti D, Zennaro R, Neviani E, Girafa G. Selezione e caratteristiche di mutanti fago-resistenti di L. helveticus.. Sci Tecn Latt Cas 1993; 44:33 - 48
  • Reinheimer JA, Morelli R, Callegari ML, Bottazzi V. Phage resistance in Lactobacillus helveticus CNRZ 328. Microbiol Alim Nutr 1993; 11:235 - 40
  • Quiberoni A, Reinheimer JA, Tailliez P. Characterization of Lactobacillus helveticus phage-resistant mutants by RAPD fingerprints and phenotypic parameters. Food Res Int 1998; a 31:537 - 42; http://dx.doi.org/10.1016/S0963-9969(99)00020-4
  • Guglielmotti DM, Reinheimer JA, Binetti AG, Giraffa G, Carminati D, Quiberoni A. Characterization of spontaneous phage-resistant derivatives of Lactobacillus delbrueckii commercial strains. Int J Food Microbiol 2006; 111:126 - 33; http://dx.doi.org/10.1016/j.ijfoodmicro.2006.04.035; PMID: 16884802
  • Capra ML, Mercanti DJ, Rossetti LC, Reinheimer JA, Quiberoni A. Isolation and phenotypic characterization of Lactobacillus casei and Lactobacillus paracasei bacteriophage-resistant mutants. J Appl Microbiol 2011; 111:371 - 81; http://dx.doi.org/10.1111/j.1365-2672.2011.05056.x; PMID: 21599814
  • Valyasevi R, Sandine WE, Geller BL. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J Bacteriol 1991; 173:6095 - 100; PMID: 1917843
  • Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY, Trieu-Cuot P, et al. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 2010; 285:10464 - 71; http://dx.doi.org/10.1074/jbc.M109.082958; PMID: 20106971
  • Haaber J, Moineau S, Fortier L-C, Hammer K. AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 2008; 74:6528 - 37; http://dx.doi.org/10.1128/AEM.00780-08; PMID: 18776030
  • Sturino JM, Klaenhammer TR. Engineered bacteriophage-defence systems in bioprocessing. Nat Rev Microbiol 2006; 4:395 - 404; http://dx.doi.org/10.1038/nrmicro1393; PMID: 16715051
  • Watanabe K, Takesue S, Jin-Nai K, Yoshikawa T. Bacteriophage active against the lactic acid beverage-producing bacterium Lactobacillus casei. Appl Microbiol 1970; 20:409 - 15; PMID: 4991958
  • Forsman P, Tanskanen J, Alatossava T. Structural similarity and genetic homology between Lactobacillus casei bacteriophages isolated in Japan and in Finland. Biosci Biotechnol Biochem 1993; 57:2043 - 8; http://dx.doi.org/10.1271/bbb.57.2043
  • Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. J Biotechnol 2000; 84:197 - 215; http://dx.doi.org/10.1016/S0168-1656(00)00375-8; PMID: 11164262
  • Capra ML, Del L Quiberoni A, Ackermann HW, Moineau S, Reinheimer JA. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei.. J Dairy Sci 2006; 89:2414 - 23; http://dx.doi.org/10.3168/jds.S0022-0302(06)72314-1; PMID: 16772557