10,052
Views
136
CrossRef citations to date
0
Altmetric
Review

Recombinant organisms for production of industrial products

Pages 116-131 | Received 16 Sep 2009, Accepted 02 Nov 2009, Published online: 01 Mar 2010

References

  • Jarai M. Genetic recombination in Streptomyces aureofaciens. Acta Microbiol Acad Sci Hungary 1961; 8:73 - 79
  • Mindlin SZ. Sermonti G, Alacevic M. Genetic recombination in the actinomycete breeding. Genetics and Breeding of Streptomyces 1969; Zagreb Yugoslav Academy of Sciences and Arts 147 - 159
  • Kieser HM, Kieser T, Hopwood DA. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol 1992; 174:5496 - 5507
  • Ryu DDY, Kim KS, Cho NY, Pai HS. Genetic recombination in Micromonospora rosaria by protoplast fusion. Appl Environ Microbiol 1983; 45:1854 - 1858
  • Yoneda Y. Increased production of extracellular enzymes by the synergistic effect of genes introduced into Bacillus subtilis by stepwise transformation. Appl Environ Microbiol 1980; 39:274 - 276
  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 2002; 58:217 - 223
  • Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metab Eng 1999; 1:1 - 11
  • Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol 2001; 55:263 - 283
  • Eggeling L, Sahm H, de Graaf AA. Quantifying and directing metabolic flux: application to amino acid overproduction. Adv Biochem Eng Biotechnol 1996; 54:1 - 30
  • Sahm H, Eggeling L, de Graaf AA. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 2000; 381:899 - 910
  • Santos CSS, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 2008; 12:168 - 176
  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 1996; 52:109 - 121
  • Ness JE, del Cardayre SB, Minshull J, Stemmer WP. Molecular breeding: the natural approach to protein design. Adv Prot Chem 2000; 55:261 - 292
  • Zhao H, Arnold FH. Optimization of DNA shuffling for high fidelity recombination. Nucl Acids Res 1997; 25:1307 - 1308
  • Patten PA, Howard RJ, Stemmer WP. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 1997; 8:724 - 733
  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 2002; 415:644 - 646
  • Hou L. Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 2009; 31:671 - 677
  • Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 2005; 69:1 - 8
  • Demain AL. The business of biotechnology. Indust Biotechnol 2007; 3:269 - 283
  • Kirchner O, Tauch AJ. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 2003; 104:287 - 299
  • Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 2003; 62:99 - 109
  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkowski A, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 2003; 104:5 - 25
  • Nishio Y, Nakamura Y, Kawarabayashi Y, Usuda Y, Kimura E, Sugimoto S, et al. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 2003; 13:1572 - 1579
  • Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ. Microbial production of L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 2008; 77:1297 - 1304
  • Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H. Innovative metabolic pathway design for efficient L-glutamate production by suppreassing CO2 emission. J Biosci Bioeng 2007; 103:262 - 269
  • Radmacher E, Eggeling L. The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 2007; 76:587 - 595
  • Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 76:615 - 623
  • Sindelar G, Wendisch VF. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 2007; 76:677 - 689
  • Komatsubara S, Kisumi M, Chibata I. Transductional construction of a threonine-producing strain of Serratia marcescens. Appl Environ Microbiol 1979; 38:1045 - 1051
  • Komatsubara S, Kisumi M, Chibata I. Transductional construction of a threonine-hyperproducing strain of Serratia marcescens: lack of feedback controls of three aspartokinases and two homoserine dehydrogenases. Appl Environ Microbiol 1983; 45:1445 - 1452
  • Sugita T, Komatsubara S. Construction of a threonine-hyperproducing strain of Serratia marcescens by amplifying the phosphoenolpyruvate carboxylase gene. Appl Microbiol Biotechnol 1989; 30:290 - 293
  • Debabov VG. The threonine story. Adv Biochem Eng/Biotechnol 2003; 79:113 - 136
  • Ishida M, Kawashima H, Sato K, Hashiguchi K, Ito H, Enei H, et al. Factors improving L-threonine production by a three L-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 1994; 58:768 - 770
  • Eggeling L, Sahm H. Lee SY, Papoutsakis ET. Amino acid production: principles of metabolic engineering. Metabolic Engineering 1999; New York Marcel Dekker 153 - 176
  • Kruse D, Kraemer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, et al. Influence of threonine exporters on threonine production in Escherichia coli. Appl Microb Biotechnol 2002; 59:205 - 210
  • Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 2003; 69:2521 - 2532
  • Guillouet S, Rodal AA, An G-H, Lessard PA, Sinskey AJ. Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 1999; 65:3100 - 3107
  • Morbach S, Sahm H, Eggeling L. L-Isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 1996; 62:4345 - 4351
  • Hashiguchi K, Takesada H, Suzuki E, Matsui H. Construction of an L-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 1999; 63:672 - 679
  • Colon GE, Nguyen TT, Jetten MSM, Sinskey A, Stephanopoulos G. Production of isoleucine by overexpression of ilvA in Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 1995; 43:482 - 488
  • Lee M, Smith GM, Eiteman MA, Altman E. Aerobic production of alanine by Escherichia coli aceF IdhA mutants expressing the Bacillus sphaericus alaD gene. Appl Microbiol Biotechnol 2004; 65:56 - 60
  • Sugiura M, Takagi T, Kisumu M. Proline production by regulatory mutants of Serratia marcescens. Appl Microbiol Biotechnol 1985; 21:213 - 239
  • Sugiura M, Imai Y, Takagi T, Kisumi M. Improvement of a proline-producing strain of Serratia marcescens by subcloning of a mutant allele of the proline gene. J Biotechnol 1985; 3:47 - 58
  • Masuda M, Takamatu S, Nishimura N, Komatsubara S, Tosa T. Improvement of culture conditions for L-proline production by a recombinant strain of Serratia marcescens. Appl Biochem Biotechnol 1993; 43:189 - 197
  • Shibasaki T, Hashimoto S, Mori H, Ozaki A. Construction of a novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J Biosci Bioeng 2000; 90:522 - 525
  • Bongaerts J, Kraemer M, Mueller U, Raeven L, Wubbolts M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 2001; 3:289 - 300
  • Ikeda M, Katsumata R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose pathway. Appl Environ Microbiol 1999; 65:2497 - 2502
  • Ikeda M, Nakanishi K, Kino K, Katsumata R. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotechnol Biochem 1994; 58:674 - 678
  • Yukawa H, Kurusu Y, Shimazu M, Yamagata H, Teresawa M. Stabilization of an Escherichia coli plasmid by a mini-F fragment of DNA. J Indust Microbiol 1988; 2:323 - 328
  • Sugimoto S, Yabuta M, Kato N, Seki T, Yoshida T, Taguchi H. Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promotor system of bacteriophage lambda. J Biotechnol 1987; 5:237 - 253
  • Konstantinov KB, Yoshida T. Knowledge-based control of fermentation processes. Biotechnol Bioeng 1992; 39:479 - 486
  • Backman K, O'Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, et al. Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 1990; 589:16 - 24
  • Ikeda M, Katsumata R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 1992; 58:781 - 785
  • Levy-Schil S, Debussche L, Rigault S, Soubrier F, Bacchette F, Lagneaux D, et al. Biotin biosyntheric pathway in a recombinant strain of Escherichia coli overexpressing bio genes: evidence for a limiting step upstream from KAPA. Appl Microbiol Biotechnol 1993; 38:755 - 762
  • Sakurai N, Imai Y, Masuda M, Komatsubara S, Tosa T. Improvement of a D-biotin-hyperproducing recombinant strain of Serratia marcescens. J Biotechnol 1994; 36:63 - 73
  • Masuda M, Takahashi K, Sakurai N, Yanagiya K, Komatsubara S, Tosa T. Further improvement of D-biotin production by a recombinant strain of Serratia marcescens. Proc Biochem 1995; 30:553 - 562
  • Koizumi S, Yonetani Y, Maruyama A, Teshiba S. Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 2000; 51:674 - 679
  • Perkins JB, Pero J. Sonenshein AL, Hoch JA, Losick R. Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. Bacillus subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology and Molecular Genetics 1993; 319:Washington, DC ASM Press 34
  • Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Indust Microbiol Biotechnol 1999; 22:8 - 18
  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 2000; 18:630 - 634
  • Karos M, Vilarino C, Bollschweiler C, Revuelta JL. A genome wide transcription analysis of a fungal rivoflavin overproducer. J Biotechnol 2004; 113:69 - 76
  • Anderson S, Marks CB, Lazarus R, Miller J, Stafford K, Seymour J, et al. Production of 2-keto-L-gulonate: an intermediate in L-ascorbate synthesis by a genetically modified Erwinia herbicola. Science 1985; 230:144 - 149
  • Grindley JF, Payton MA, van de Pol H, Hardy KG. Conversion of glucose to 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis by a recombinant strain of Erwinia citreus. Appl Environ Microbiol 1988; 54:1770 - 1775
  • Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 1997; 63:454 - 460
  • Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol 2008; 26:100 - 108
  • Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283 - 319
  • Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum fot biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006; 9:268 - 274
  • Causey TB, Zhou S, Shanmugam KT, Ingram LO. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 2003; 100:825 - 832
  • Parekh SR, Cheryan M. High concentrations of acetate with a mutant strain of C. thermoaceticum. Biotechnol Lett 1994; 16:139 - 142
  • Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y, et al. Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl Environ Microbiol 1989; 55:171 - 176
  • Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, et al. Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl Environ Microbiol 2005; 71:2789 - 2792
  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 2002; 20:707 - 712
  • John RP, Gangadharan D, Madhavan Nampoothiri K. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquuefaciens through protoplastic fusion for L-latic acid production from starchy wastes. Bioresour Technol 2008; 99:8008 - 8015
  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO. Fermentation of 10% (w/v) sugar to D(-)-lactate by engineered Escherichia coli B. Biotechnol Lett 2003; 27:1891 - 1896
  • Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, et al. D-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 2006; 101:172 - 177
  • Skory CD. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Appl Microbiol Biotechnol 2004; 64:237 - 242
  • Saito S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, et al. Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl Environ Microbiol 2005; 71:2789 - 2792
  • Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, et al. Replacement of a metabolic pathway for large scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 1999; 65:4211 - 4215
  • Lee SJ, Song H, Lee SY. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 2006; 72:1939 - 1948
  • Lin H, Bennett GN, San KY. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 2005; 90:775 - 779
  • Sanchez AM, Bennett GN, San KY. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli. Metab Eng 2005; 7:229 - 239
  • Vemuri GN, Eiteman MA, Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 2002; 28:325 - 332
  • Chandran SS, Yi J, Draths KM, Von Daeniken R, Weber W, Frost JW. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 2003; 19:808 - 814
  • Kraemer M, Bongaerts J, Bovenberg R, Kremer S, Mueller U, Orf S, et al. Metabolic engineering for microbial production of shikimic acid. Metab Eng 2003; 5:277 - 283
  • Liu X, Yang ST. Metabolic engineering of Clostridium tyrobutyricum for butyric acid fermentation. Proc 229th ACS National Meeting San Diego 2005; Abstract 70
  • Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I. L-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 1991; 13:991 - 996
  • Picataggio S, Rohver T, Deander K, Lanning D, Reynolds R, Mielenz J, et al. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Nat Biotechnol 1992; 10:894 - 898
  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 1987; 53:2420 - 2425
  • Doran JB, Ingram LO. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol Prog 1993; 9:533 - 538
  • Dien BS, Nichols NN, O'Bryan PJ, Bothast RJ. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 2000; 84-86:181 - 196
  • Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2009; 36:139 - 147
  • Hou L. Improved production of ethanol by novel gene shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2010; 160:1084 - 1093
  • Wei P, Li Z, He P, Lin Y, Jiang N. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 2008; 49:113 - 120
  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 2000; 77:191 - 208
  • Sanford K, Valle F, Ghirnikar R. Pathway engineering through rational design. Tutorial: Designing and building cell factories for biobased production. Gen Eng News 2004; 24:44 - 45
  • Nakamura C, Whited G. Metabolic engineering for the microbial production of 1,3 propanediol. Curr Opin Biotechnol 2003; 14:454 - 459
  • Kaup B, Bringer-Meyer S, Sahm H. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 2004; 64:333 - 339
  • Kaup B, Bringer-Meyer S, Sahm H. D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 2005; 69:397 - 403
  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerbezem M. High-level; production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metyabolic engineering. Appl Environ Microbiol 2007; 73:1864 - 1872
  • Miyagawa K, Kimura H, Nakahama K, Kikuchi M, Doi M, Akiyama S, et al. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Nat Biotechnol 1986; 4:225 - 228
  • Matthews PD, Wurtzel ET. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 2000; 53:396 - 400
  • Deng M-D, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 2005; 7:201 - 214
  • Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic operon. Biotechnol Bioeng 1993; 42:1053 - 1060
  • Bermejo LL, Welker NE, Papoutsakis ET. Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 1998; 64:1079 - 1085
  • Lein J. Vanek Z, Hostalek Z. The Panlabs penicillin strain improvement program. Over production of Microbial Metabolites; Strain Improvement and Process Control Strategies 1986; Boston, MA Butterworth Publishers 105 - 139
  • Kennedy J, Turner G. γ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 1996; 253:189 - 197
  • Hamlyn PF, Ball C. Sebek OK, Laskin AI. Recombination studies with Cephalosporium acremonium. Genetics of Industrial Microorganisms 1979; Washington, DC American Society for Microbiology 185 - 191
  • Skatrud PL, Fisher DL, Ingolia TD, Queener SW. Alacevic M, Hranueli D, Toman Z. Improved transformation of Cephalosporium acremonium. Genetics of Industrial Microorganisms, Part B 1987; Zagreb Pliva 111 - 119
  • Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL, et al. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Nat Biotechnol 1989; 7:477 - 485
  • Wesseling AC, Lago B. Strain improvement by genetic recombination of cephamycin producers, Nocardia lactamdurans and Streptomyces griseus. Devel Indust Microbiol 1981; 22:641 - 651
  • Bignell DRD, Tahlan K, Colvin KR, Jensen SE, Leskiw BK. Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. Antimicrob Agents Chemother 2005; 49:1529 - 1541
  • Chary VK, de la Fuente JL, Leitao AL, Liras P, Martin JF. Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine-6-aminotransferase and up two-fold increase in cephamycin C production. Appl Microbiol Biotechnol 2000; 53:282 - 288
  • Cantwell C, Beckmann R, Whiteman P, Queener SW, Abraham EP. Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond (Biol) 1992; 248:283 - 289
  • Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA, et al. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Nat Biotechnol 1995; 13:58 - 62
  • Velasco J, Adrio JL, Moreno MA, Diez B, Soler G, Barredo JL. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 2000; 18:857 - 861
  • Luo H, Yu H, Qiang L, Shen Z. Cloning and co-expression of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb Technol 2004; 35:514 - 518
  • Choi KP, Kim KH, Kim JW. Strain improvement of clavulanic acid producing Streptomyces clavuligerus. Proc 10th Internat Symp Biol Actinomycetes (ISBA) (Beijing) 1997; 12:9
  • Li R, Townsend CA. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 2006; 8:240 - 252
  • Perez-Redondo RA, Rodriguez-Garcia A, Martin JF, Liras P. Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: evidence for two different genes in formation of the C3 unit. J Bacteriol 1999; 181:6922 - 6928
  • Paradkar AS, Aiodoo KA, Jensen SE. A pathway-specific transcriptional activator regulates late steps of clavuklanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 1998; 27:831 - 843
  • Perez-Llarena FJ, Liras P, Rodriguez-Garcia A, Martin JF. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results overproduction of both β-lactam compounds. J Bacteriol 1997; 179:2053 - 2059
  • Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ. Applications of transposition mutagenesis in antibiotic producing streptomyces. Ant v Leeuwenhoek 1997; 71:179 - 187
  • Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW, Baltz RH. Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 1996; 16:67 - 72
  • Yamashita F, Hotta K, Kurasawa S, Okami Y, Umezawa H. Antibiotic formation by interspecific protoplast fusion in streptomycetes and emergence of drug resistance by protoplast regeneration. Proc 4th Internat Symp Genet Indust Microorgs (Kyoto) 1982; 20:108
  • Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K, et al. Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 1984; 37:1491 - 1494
  • Traxler P, Schupp T, Wehrli W. 16,17-dihydrorifamycin S and 16,17-dihydro-17-hydroxyrifamycin S, two novel rifamycins from a recombinant strain C5/42 of Nocardia mediterranei. J Antibiot 1982; 35:594 - 601
  • Okanishi M, Suzuki N, Furuta T. Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci Biotechnol Biochem 1996; 60:1233 - 1238
  • Galm U, Shen B. Expressionof biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Exp Opin Drug Disc 2006; 1:409 - 437
  • Mendez C, Salas JA. On the generation of novel anticancer drugs by recombinant DNA technology: the use of combinatorial biosynthesis to produce novel drugs. Comb Chem High Throughput Screen 2003; 6:513 - 526
  • Rodriguez E, McDaniel R. Combinatorial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 2001; 4:526 - 534
  • Trefzer A, Blanco G, Remsing L, Kunzel E, Rix U, Lipata F, et al. Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes from three different biosynthetic pathways. J Amer Chem Soc 2002; 124:6056 - 6062
  • McAlpine JB, Yuan JS, Brown DP, Grebner KD, Whittern DN, Buko A, et al. New antibiotics from genetically engineered actinomycetes. 1.2-Norerythromycins, isolation and structural determination. J Antibiot 1987; 40:1115 - 1122
  • Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythrea. Science 1991; 252:114 - 117
  • Donadio S, McAlpine JB, Sheldon PJ, Jackson M, Katz L. An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci USA 1993; 90:7119 - 7123
  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L. Modular organization of genes required for complex polyketide biosynthesis. Science 1991; 252:675 - 679
  • McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci USA 1999; 96:1846 - 1851
  • Pacey MS, Dirlam JP, Geldart RW, Leadlay PF, McArthur HAI, McCormick EL, et al. Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 23338 pIGI I. Fermentation, isolation and biological activity. J Antibiot 1998; 51:1029 - 1034
  • Xue Q, Ashley G, Hutchinson CR, Santi DV. A multi-plasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci 1999; 96:11740 - 11745
  • Zhou L, Ahlert J, Xue Y, Thorson JS, Sherman DH, Liu H-W. Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety. J Amer Chem Soc 1999; 121:9881 - 9882
  • Mendez C, Salas JA. Altering the glycosylation pattwern of bioactive compounds. Trends Biotechnol 2001; 19:449 - 456
  • Arisawa A, Kawamura N, Narita T, Kojima I, Okamura K, Tsunekawa H, et al. Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. J Antibiot 1996; 49:349 - 354
  • Epp JK, Huber MLB, Turner JR, Goodson T, Schoner BE. Production of a hybrid macrolide in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 1989; 85:293 - 301
  • Hara O, Hutchinson CR. A macrolide 3-O-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens. J Bacteriol 1992; 174:5141 - 5144
  • Strohl WR, Bartel PL, Connors NC, Woodman RH. Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Indust Microbiol 1991; 7:163 - 174
  • Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, et al. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene functions. J Bacteriol 1990; 172:4816 - 4826
  • Stachelhaus T, Schneider A, Marahiel M. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 1995; 269:69 - 72
  • Van Lanen SG, Shen B. Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 2006; 9:252 - 260
  • Jenke-Kodama H, Sandmann A, Müller R, Dittmann E. Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 2005; 22:2027 - 2039
  • Mills SD. When will the genomics investment pay off for antibacterial discovery?. Biochem Pharmacol 2006; 71:1096 - 1102
  • Knowles J, Gromo G. Target selection in drug discovery. Nat Revs/Drug Disc 2003; 2:63 - 69
  • Zazopoulos E, Hwang K, Staffa A, Liu W, Bachmann BO, Nonaka K, et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 2003; 21:187 - 190
  • Glass JI, Belanger AE, Robertson GT. Streptococcus pneumonia as a genomics platform for broad spectrum antibiotic discovery. Curr Opin Microbiol 2002; 5:338 - 342
  • Huynen MA, Diaz L, Bork P. Differential genome display. Trends Genet 1997; 13:389 - 390
  • Huynen M, Dandekar T, Bork P. Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett 1998; 426:1 - 5
  • Newman DJ, Shapiro S. Microbial prescreens for anticancer activity. SIM News 2008; 58:132 - 150
  • Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, et al. Mutation and high-throughput screening method for improving the production of epothilones of Sorangium. J Ind Microbiol Biotechnol 2007; 34:615 - 623
  • Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 2003; 21:150 - 156
  • Lee JY, Hwang YS, Kim SS, Kim ES, Choi CY. Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. Biosci Bioeng 2000; 89:606 - 608
  • Hwang YS, Kim E-S, Biró S, Choi C-Y. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 2003; 69:1263 - 1269
  • Ikeda H, Takada Y, Pang C-H, Tanaka H, Omura S. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 1993; 175:2077 - 2082
  • Zhang X, Chen Z, Li M, Wen Y, Song Y, Li J. Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis. Appl Microbiol Biotechnol 2006; 72:986 - 994
  • Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297 - 306
  • Rayder RA. Expression systems for process and product improvement. BioProc Internat 2008; 6:4 - 9
  • Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 2003; 100:5022 - 5027
  • Morrow KJ Jr. Grappling with biologic manufacturing concerns. Gen Eng Biotechnol News 2009; 29:54 - 55
  • Barnard GC, Henderson GE, Srinivasan S, Gerngross TU. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr Purif 2004; 38:264 - 271
  • Werten MWT, van den Bosch TJ, Wind RD, Mooibroek H, De Wolf FA. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 1999; 15:1087 - 1096
  • Morrow KJ Jr. Strategic protein production. Gen Eng Biotechnol News 2007; 27:50 - 54
  • Andersen DC, Krummen L. Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 2002; 13:117 - 123
  • Wrotnowski C. Animal cell culture; novel systems for research and production. Gen Eng News 1998; 18:13 - 37
  • Zhang J, Robinson D. Development of animal-free, protein-free and chemically-defined media for NS0 cell culture. Cytotechnology 2005; 48:59 - 74
  • Decaria P, Smith A, Whitford W. Many considerations in selecting bioproduction culture media. BioProc Internat 2009; 7:44 - 51
  • Scott C, Montgomery SA, Rosin LJ. Genetic engineering leads to microbial, animal cell and transgenic expression systems. BIO Internat Conv 2007; 27 - 34
  • Morrow KJ Jr. Improving protein production processes. Gen Eng & Biotechnol News 2007; 27:44 - 47
  • Ryll T. Antibody production using mammalian cell culture-How high can we push productivity?. Proc SIM Ann Mtg Prog Abstr, San Diego 2008; 146:101
  • Meyer HP, Biass J, Jungo C, Klein J, Wenger J, Mommers R. An emerging star for therapeutic and catalytic protein production. BioProc Internat 2008; 6:10 - 21
  • CocoMartin JM, Harmsen MM. A review of therapeutic protein expression by mammalian cells. BioProcess Internat 2008; 6:28 - 33
  • Jarvis LM. A technology bet. DSM's pharma product unit leverages its biotech strength to survive in a tough environment. Chem Eng News 2008; 86:30 - 31
  • Agathos SN. Production scale insect cell culture. Biotechnol Adv 1991; 9:51 - 68
  • Knight P. Baculovirus vectors for making proteins in insect cells. ASM News 1991; 57:567 - 570
  • Cowan D. Industrial enzyme technology. Trends Biotechnol 1996; 14:177 - 178
  • Falch E. Industrial enzymes-developments in production and application. Biotech Adv 1991; 9:643 - 658
  • Vaishnav P, Demain AL. Schaechter M, Lederberg J. Industrial biotechnology overview. Encyclopedia of Microbiology 2009; 3rd edition Oxford Elsevier 335 - 348
  • Wackett LP. Bacterial biocatalysis: stealing a page from nature's book. Nat Biotechnol 1997; 15:415 - 416
  • Palva I. Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 1982; 19:81 - 87
  • O'Neill GP, Kilburn DG, Warren RAJ, Miller RC Jr. Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli. Appl Environ Microbiol 1986; 52:737 - 743
  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, et al. Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1983; 1:691 - 696
  • Van Brunt J. Fungi: the perfect hosts?. Bio/Technology 1986; 4:1057 - 1062
  • Mondou F, Shareck F, Morosoli R, Kleupfel D. Cloning of the xylanase gene of Streptomyces lividans. Gene 1986; 49:323 - 329
  • Komatsubara S, Taniguchi T, Kisumi M. Overproduction of aspartase of Escherichia coli K-12 by molecular cloning. J Biotechnol 1986; 3:281 - 291
  • Elander RP. Sankaran R, Manja KS. Genetic engineering applications in the development of selected industrial enzymes and therapeutic proteins. Microbes for Better Living 1995; Mysore, India Defense Food Research Laboratory 619 - 628
  • Van Hartinsveldt W, van Zeijl CM, Harteeld GM, Gouka RJ, Suykerbuyk M, Luiten RG, et al. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 1993; 127:87 - 94
  • Mayer H, Collins J, Wagner F. Weetall HH, Royer GP. Cloning of the penicillin G-acylase gene of Escherichia coli ATCC 11105 on multicopy plasmids. Enzyme Engineering 1980; 5:New York Plenum 61 - 69
  • Van den Burg B, Vriend G, Veltman O, Venema G, Eijsink VGH. Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 1998; 95:2056 - 2060
  • Ness JE, Welch M, Giver L, Bueno M, Cherry JR, Borchert TV, et al. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 1999; 17:893 - 896
  • Jaeger KE, Reetz MT. Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 2000; 4:68 - 73
  • Suenaga H, Mitsokua M, Ura Y, Watanabe T, Furukawa K. Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene and alkylbenzenes. J Bacteriol 2001; 183:5441 - 5444
  • Song JK, Rhee JS. Enhancement of stability and activity of phospholipase A(1) in organic solvents by directed evolution. Biochim Biophys Acta 2001; 1547:370 - 378
  • Raillard S, Krebber A, Chen Y, Ness JE, Bermudez E, Trinidad R, et al. Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem Biol 2001; 8:891 - 898
  • Kurtzman AL, Govindarajan S, Vahle K, Jones JT, Heinrichs V, Patten PA. Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol 2001; 12:361 - 370
  • Marshall SH. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines. Biotechnol Adv 2002; 20:229 - 238
  • Locher CP, Soong NW, Whalen RG, Punnonen J. Development of novel vaccines using DNA shuffling and screening strategies. Curr Opin Mol Ther 2004; 6:34 - 39
  • Tobin MB, Gustafsson C, Huisman GW. Directed evolution: the ‘rational’ basis for ‘irrational’ design. Curr Opin Struct Biol 2000; 10:421 - 427
  • Crameri A, Whitehorn A, Stemmer WPC. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 1996; 14:315 - 319
  • Chen X, Wei P, Fan L, Yang D, Zhu X, Shen W, et al. Generation of high-yield rapamycin-producing strains through protoplast-related techniques. Appl Microbiol Biotechnol 2009; 83:507 - 512
  • Weathers PJ, Elkholy S, Wobbe KK. Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell & Devel Biol Plant 2006; 42:309 - 317
  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a metabolic pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003; 21:796 - 802
  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndubgu JM, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006; 440:940 - 943
  • Lenihan JR, Tsuruta H, Diola D, Renninger NS, Regentin R. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog 2008; 24:1026 - 1032
  • Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 2009; (ahead of print)
  • Bigelas R. Jacobson GK, Jolly SO. Industrial products of biotechnology: application of gene technology. Biotechnology 1989; 7b:Weinheim VCH 230 - 259
  • Tseng YH, Ting WY, Chou HC, Yang BY, Chun CC. Increase of xanthan production by cloning xps genes into wild-type Xanthomonas campestris. Lett Appl Microbiol 1992; 14:43 - 46
  • Letisse F, Chevallereau P, Simon JL, Lindley ND. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol 2001; 55:417 - 422
  • Becker A, Katzen F, Puehler A, Ielpi L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 1998; 50:145 - 152