808
Views
10
CrossRef citations to date
0
Altmetric
Report

Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests

, , , , , , , , , & show all
Pages 341-344 | Received 13 Jun 2010, Accepted 20 Jul 2010, Published online: 01 Sep 2010

References

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:12 - 14
  • Crickmore N. Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 2006; 101:616 - 619
  • Margalith Y, Ben-Dov E. Rechcigl JE, Rechcigl NA. Biological Control by Bacillus thuringiensis subsp. israelensis. Insect Pest Management: Techniques for Environmental Protection 2000; Boca Raton, FL CRC Press LLC 243 - 301
  • Ludwig M, Becker N. Studies on possible resistance against Bacillus thuringiensis israelensis in Aedes vexans (Diptera, Culicinae) after 15 years of application. Zool Beitr 1997; 38:167 - 174
  • Otieno-Ayayo ZN, Zaritsky A, Wirth MC, Manasherob R, Khasdan V, Cahan R, et al. Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 2008; 10:2191 - 2199
  • Crickmore N, Bone EJ, Williams JA, Ellar DJ. Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 1995; 131:249 - 254
  • Wirth MC, Georghiou GP, Federici BA. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natnl Acad Sci USA 1997; 94:10536 - 10540
  • Wirth MC, Zaritsky A, Ben-Dov E, Manasherob R, Khasdan V, Boussiba S, et al. Cross-resistance spectra of Culex quinquefasciatus resistant to mosquitocidal toxins of Bacillus thuringiensis towards recombinant Escherichia coli expressing genes from B. thuringiensis ssp. israelensis. Environ Microbiol 2007; 9:1393 - 1401
  • Khasdan V, Sapojnik M, Zaritsky A, Horowitz AR, Boussiba S, Rippa M, et al. Larvicidal activities against agricultural pests of transgenic Escherichia coli expressing combinations of four genes from Bacillus thuringiensis. Arch Microbiol 2007; 188:643 - 653
  • Boussiba S, Wu XQ, Ben-Dov E, Zarka A, Zaritsky A. Nitrogen-fixing cyanobacteria as gene delivery system for expressing mosquitocidal toxins of Bacillus thuringiensis subsp. israelensis. J Appl Phycol 2000; 12:461 - 467
  • Manasherob R, Ben-Dov E, Wu X, Boussiba S, Zaritsky A. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol 2002; 45:217 - 220
  • Wu X, Vennison SJ, Liu H, Ben-Dov E, Zaritsky A, Boussiba S. Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 1997; 63:1533 - 1537
  • Lluisma AO, Karmacharya N, Zarka A, Ben-Dov E, Zaritsky A, Boussiba S. Suitability of Anabaena PCC 7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl Microbiol Biotechnol 2001; 57:161 - 166
  • Khasdan V, Ben-Dov E, Manasherob R, Boussiba S, Zaritsky A. Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing toxin genes from Bacillus thuringiensis ssp. israelensis. FEMS Microbiol Lett 2003; 227:189 - 195
  • Berry C, O'Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2002; 68:5082 - 5095
  • Gonsalez JM Jr, Carlton BC. A large transmissible plasmid is required for crystal toxin production in Bacillus thuriongiensis variety israelensis. Plasmid 1984; 11:28 - 38
  • Khasdan V, Ben-Dov E, Manasherob R, Boussiba S, Zaritsky A. Toxicity and synergism in transgenic Escherichia coli expressing four genes from Bacillus thuringiensis subsp. israelensis. Environ Microbiol 2001; 3:798 - 806
  • Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S, Zaritsky A. Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 2003; 5:997 - 1001
  • Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. The EFSA J 2004; 48:1 - 18
  • Gottfried P, Lotan O, Kolot M, Maslenin L, Bendov R, Gorovits R, et al. Site-specific recombination in Arabidopsis plants promoted by integrase protein of coliphage HK022. Plant Mol Biol 2005; 57:435 - 444
  • Harel-Levi G, Goltsman J, Tuby CN, Yagil E, Kolot M. Human genomic site-specific recombination catalyzed by coliphage HK022 integrase. J Biotechnol 2008; 134:46 - 54
  • Kolot M, Meroz A, Yagil E. Site-specific recombination in human cells catalyzed by the wild-type integrase protein of coliphage HK022. Biotechnol Bioeng 2003; 84:6 - 60
  • Melnikov O, Zaritsky A, Zarka A, Boussiba S, Malchin N, Yagil E, et al. Site-Specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022. J Bacteriol 2009; 191:4458 - 4464
  • Melnikov O. Exploiting Site-Specific Recombination In The Nitrogen-Fixing Cyanobacterium Anabaena PCC 7120 Catalyzed By The Integrase of Coliphage HK022 2010; Ben-Gurion University of the Negev Ph.D., Thesis
  • Ye-Ebiyo Y, Pollack RJ, Spielman A. Enhanced development in nature of larval Anopheles arabiensis mosquitoes feeding on maize pollen. Am J Trop Med Hyg 2000; 63:90 - 93
  • Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A. Enhancement of development of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Hyg 2003; 68:748 - 752
  • Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A. A component of maize pollen that stimulates larval mosquitoes (Diptera: Culicidae) to feed and increases toxicity of microbial larvicides. J Med Entomol 2003; 40:860 - 864
  • Borovsky D. Isolation and characterization of highly purified mosquito oostatic hormone. Arch Insect Biochem Physiol 1985; 2:333 - 349
  • Borovsky D, Carlson DA, Griffin PR, Shabanowitz J, Hunt DF. Mosquito oostatic factor a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut. FASEB J 1990; 4:3015 - 3020
  • Borovsky D, Janssen I, Vanden Broeck J, Huybrechts R, Verhaert P, DeBondt HL, et al. Molecular sequencing and modeling of Neobellieria bullata trypsin: Evidence for translational control with Neb TMOF. Eur J Biochem 1996; 237:279 - 287
  • Borovsky D, Khasdan V, Nauwelaers S, Theunis C, Bertier L, Ben-Dov E, et al. Synergy between Aedes aegypti Modulating Oostatic Factor and δ-endotoxins. The Open Toxinol J 2010; 3 in press
  • Ben-Yehuda S, Assael F, Mendel Z. Improved chemical control of Capnodis tenebrionis L. and C. carbonaria Klug (Coleoptera: Buprestidae) in stone-fruit plantations in Israel. Phytoparasitica 2000; 28:27 - 41
  • Mendel Z. Appelbaum SW, Gerson UA. Capnodis tenebrionis and Capnodis carbonaria. Plant Pests of the Middle East 2002; Publication of the Hebrew University of Jerusalem (e-book: www.agric.huj.il/mepests)
  • Marannino P, de Lillo E. The peach flatheaded root-borer, Capnodis tenebrionis (L.) and its enemies. IOBC/wprs Bulletin 2007; 30:197 - 200
  • Garrido A. Bioecology of Capnodis tenebrionis L. (Coleop.: Buprestidae) and approaches to its control. Boletin del Servicio de Defensa contra Plagas e Inspeccion Fitopatologica 1984; 10:205 - 221
  • Ben-Yehuda S, Assael F, Mendel Z. Improved chemical control of Capnodis tenebrionis L. and C. carbonaria Klug (Coleoptera: Buprestidae) in stone-fruit plantations in Israel. Phytoparasitica 2000; 28:27 - 41
  • Gindin G, Kuznetsowa T, Protasov A, Ben Yehuda S, Mendel Z. Artificial diet for two flat headed borers, Capnodis spp. (Coleoptera: Buprestidae). Eur J Entomol 2009; 106:573 - 581
  • Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, et al. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 1997; 63:4883 - 4890