911
Views
10
CrossRef citations to date
0
Altmetric
Commentary

Srf

A key factor controlling skeletal muscle hypertrophy by enhancing the recruitment of muscle stem cells

&
Pages 88-90 | Published online: 01 May 2012

References

  • Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 2007; 19:628 - 33; http://dx.doi.org/10.1016/j.ceb.2007.09.012; PMID: 17996437
  • Rüegg MA, Glass DJ. Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 2011; 51:373 - 95; http://dx.doi.org/10.1146/annurev-pharmtox-010510-100537; PMID: 20936944
  • Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2008; 2:22 - 31; http://dx.doi.org/10.1016/j.stem.2007.12.012; PMID: 18371418
  • Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 2002; 16:207 - 9; PMID: 11744623
  • Penkowa M, Keller C, Keller P, Jauffred S, Pedersen BK. Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise. FASEB J 2003; 17:2166 - 8; PMID: 12958150
  • Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 2008; 7:33 - 44; http://dx.doi.org/10.1016/j.cmet.2007.11.011; PMID: 18177723
  • Horsley V, Jansen KM, Mills ST, Pavlath GK. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003; 113:483 - 94; http://dx.doi.org/10.1016/S0092-8674(03)00319-2; PMID: 12757709
  • Bondesen BA, Mills ST, Pavlath GK. The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms. Am J Physiol Cell Physiol 2006; 290:C1651 - 9; http://dx.doi.org/10.1152/ajpcell.00518.2005; PMID: 16467402
  • Otis JS, Burkholder TJ, Pavlath GK. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 2005; 310:417 - 25; http://dx.doi.org/10.1016/j.yexcr.2005.08.009; PMID: 16168411
  • Shen W, Prisk V, Li Y, Foster W, Huard J. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol 2006; 101:1215 - 21; http://dx.doi.org/10.1152/japplphysiol.01331.2005; PMID: 16778000
  • Pipes GC, Creemers EE, Olson EN. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 2006; 20:1545 - 56; http://dx.doi.org/10.1101/gad.1428006; PMID: 16778073
  • Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, et al. New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 2006; 26:6664 - 74; http://dx.doi.org/10.1128/MCB.00138-06; PMID: 16914747
  • Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 2005; 102:1082 - 7; http://dx.doi.org/10.1073/pnas.0409103102; PMID: 15647354
  • Flück M, Carson JA, Schwartz RJ, Booth FW. SRF protein is upregulated during stretch-induced hypertrophy of rooster ALD muscle. J Appl Physiol 1999; 86:1793 - 9; PMID: 10368339
  • Lamon S, Wallace MA, Léger B, Russell AP. Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 2009; 587:1795 - 803; http://dx.doi.org/10.1113/jphysiol.2009.168674; PMID: 19255118
  • Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, et al. Premature aging in skeletal muscle lacking serum response factor. PLoS One 2008; 3:e3910; http://dx.doi.org/10.1371/journal.pone.0003910; PMID: 19079548
  • McCarthy JJ, Esser KA. Counterpoint: Satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 2007; 103:1100 - 2, discussion 1102-3; http://dx.doi.org/10.1152/japplphysiol.00101.2007a; PMID: 17724306
  • O’Connor RS, Pavlath GK. Point:Counterpoint: Satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 2007; 103:1099 - 100; http://dx.doi.org/10.1152/japplphysiol.00101.2007; PMID: 17289912
  • Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A 2010; 107:15111 - 6; http://dx.doi.org/10.1073/pnas.0913935107; PMID: 20713720
  • Qaisar R, Renaud G, Morine K, Barton ER, Sweeney HL, Larsson L. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?. FASEB J 2012; 26:1077 - 85; http://dx.doi.org/10.1096/fj.11-192195; PMID: 22125316
  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 2011; 138:3657 - 66; http://dx.doi.org/10.1242/dev.068858; PMID: 21828094
  • Guerci A, Lahoute C, Hébrard S, Collard L, Graindorge D, Favier M, et al. Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 2012; 15:25 - 37; http://dx.doi.org/10.1016/j.cmet.2011.12.001; PMID: 22225874
  • Alway SE, Degens H, Krishnamurthy G, Smith CA. Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. Am J Physiol Cell Physiol 2002; 283:C66 - 76; PMID: 12055074
  • Carson JA, Yamaguchi M, Alway SE. Hypertrophy and proliferation of skeletal muscle fibers from aged quail. J Appl Physiol 1995; 78:293 - 9; PMID: 7713826