718
Views
11
CrossRef citations to date
0
Altmetric
Commentary

Evolutionary conservation of neocortical neurogenetic program in the mammals and birds

&
Pages 124-129 | Received 31 May 2012, Accepted 06 Jun 2012, Published online: 01 Jul 2012

References

  • Butler AB, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. Hoboken, N.J.: Wiley-Interscience, 2005.
  • Medina L, Reiner A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?. Trends Neurosci 2000; 23:1 - 12; http://dx.doi.org/10.1016/S0166-2236(99)01486-1; PMID: 10631781
  • Northcutt RG, Kaas JH. The emergence and evolution of mammalian neocortex. Trends Neurosci 1995; 18:373 - 9; http://dx.doi.org/10.1016/0166-2236(95)93932-N; PMID: 7482801
  • Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, et al, Avian Brain Nomenclature Consortium. Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 2005; 6:151 - 9; http://dx.doi.org/10.1038/nrn1606; PMID: 15685220
  • MacLean PD. The triune brain in evolution: role in paleocerebral functions. New York: Plenum Press, 1990.
  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, et al, Avian Brain Nomenclature Forum. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 2004; 473:377 - 414; http://dx.doi.org/10.1002/cne.20118; PMID: 15116397
  • Fernandez AS, Pieau C, Repérant J, Boncinelli E, Wassef M. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 1998; 125:2099 - 111; PMID: 9570774
  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 2000; 424:409 - 38; http://dx.doi.org/10.1002/1096-9861(20000828)424:3<409::AID-CNE3>3.0.CO;2-7; PMID: 10906711
  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8:427 - 37; http://dx.doi.org/10.1038/nrn2151; PMID: 17514196
  • Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill, Health Professions Division, 2000.
  • McConnell SK. The generation of neuronal diversity in the central nervous system. Annu Rev Neurosci 1991; 14:269 - 300; http://dx.doi.org/10.1146/annurev.ne.14.030191.001413; PMID: 2031572
  • Luskin MB, Pearlman AL, Sanes JR. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1988; 1:635 - 47; http://dx.doi.org/10.1016/0896-6273(88)90163-8; PMID: 3272182
  • Kornack DR, Rakic P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 1995; 15:311 - 21; http://dx.doi.org/10.1016/0896-6273(95)90036-5; PMID: 7646888
  • Reid CB, Tavazoie SF, Walsh CA. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 1997; 124:2441 - 50; PMID: 9199370
  • Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 2006; 9:743 - 51; http://dx.doi.org/10.1038/nn1694; PMID: 16680166
  • Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008; 57:364 - 77; http://dx.doi.org/10.1016/j.neuron.2007.12.012; PMID: 18255030
  • Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008; 57:378 - 92; http://dx.doi.org/10.1016/j.neuron.2007.12.028; PMID: 18255031
  • Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005; 45:207 - 21; http://dx.doi.org/10.1016/j.neuron.2004.12.036; PMID: 15664173
  • Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK. The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 2008; 18:28 - 35; http://dx.doi.org/10.1016/j.conb.2008.05.006; PMID: 18508260
  • Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012; 139:1535 - 46; http://dx.doi.org/10.1242/dev.069963; PMID: 22492350
  • Reiner A. A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex. Brain Behav Evol 1991; 38:53 - 91; http://dx.doi.org/10.1159/000114379; PMID: 1683805
  • Suzuki IK, Kawasaki T, Gojobori T, Hirata T. The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev Cell 2012; 22:863 - 70; http://dx.doi.org/10.1016/j.devcel.2012.01.004; PMID: 22424929
  • Karten HJ, Hodos W, Nauta WJ, Revzin AM. Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 1973; 150:253 - 78; http://dx.doi.org/10.1002/cne.901500303; PMID: 4721779
  • Striedter GF, Marchant TA, Beydler S. The “neostriatum” develops as part of the lateral pallium in birds. J Neurosci 1998; 18:5839 - 49; PMID: 9671671
  • Marin-Padilla M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 1978; 152:109 - 26; http://dx.doi.org/10.1007/BF00315920; PMID: 637312
  • Jacob J, Maurange C, Gould AP. Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates?. Development 2008; 135:3481 - 9; http://dx.doi.org/10.1242/dev.016931; PMID: 18849528
  • Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 2006; 7:883 - 90; http://dx.doi.org/10.1038/nrn2008; PMID: 17033683
  • Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297:365 - 9; http://dx.doi.org/10.1126/science.1074192; PMID: 12130776
  • Sahara S, O’Leary DD. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 2009; 63:48 - 62; http://dx.doi.org/10.1016/j.neuron.2009.06.006; PMID: 19607792
  • Rowe TB, Macrini TE, Luo Z-X. Fossil evidence on origin of the mammalian brain. Science 2011; 332:955 - 7; http://dx.doi.org/10.1126/science.1203117; PMID: 21596988