571
Views
2
CrossRef citations to date
0
Altmetric
Commentary

p21-activated kinase 4 regulates mitotic spindle positioning and orientation

&
Pages 130-133 | Received 04 Jun 2012, Accepted 12 Jun 2012, Published online: 01 Jul 2012

References

  • Morin X, Bellaïche Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 2011; 21:102 - 19; http://dx.doi.org/10.1016/j.devcel.2011.06.012; PMID: 21763612
  • Toyoshima F, Nishida E. Spindle orientation in animal cell mitosis: roles of integrin in the control of spindle axis. J Cell Physiol 2007; 213:407 - 11; http://dx.doi.org/10.1002/jcp.21227; PMID: 17654475
  • Fink J, Carpi N, Betz T, Bétard A, Chebah M, Azioune A, et al. External forces control mitotic spindle positioning. Nat Cell Biol 2011; 13:771 - 8; http://dx.doi.org/10.1038/ncb2269; PMID: 21666685
  • Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825 - 41; http://dx.doi.org/10.1038/nrc2964; PMID: 21102634
  • Bompard G, Rabeharivelo G, Cau J, Abrieu A, Delsert C, Morin N. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 2012; http://dx.doi.org/10.1038/onc.2012.98; PMID: 22450748
  • Faure S, Vigneron S, Dorée M, Morin N. A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis. EMBO J 1997; 16:5550 - 61; http://dx.doi.org/10.1093/emboj/16.18.5550; PMID: 9312014
  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 2010; 190:807 - 22; http://dx.doi.org/10.1083/jcb.200912056; PMID: 20805321
  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3:767 - 73; http://dx.doi.org/10.1093/embo-reports/kvf157; PMID: 12151336
  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005; 20:237 - 49; http://dx.doi.org/10.1016/j.molcel.2005.08.035; PMID: 16246726
  • Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008; 27:4900 - 8; http://dx.doi.org/10.1038/onc.2008.131; PMID: 18427546
  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367:40 - 6; http://dx.doi.org/10.1038/367040a0; PMID: 8107774
  • Cau J, Faure S, Comps M, Delsert C, Morin N. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 2001; 155:1029 - 42; http://dx.doi.org/10.1083/jcb.200104123; PMID: 11733543
  • Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature reviews 2008; 9:464-77.
  • Daum JR, Potapova TA, Sivakumar S, Daniel JJ, Flynn JN, Rankin S, et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 2011; 21:1018 - 24; http://dx.doi.org/10.1016/j.cub.2011.05.032; PMID: 21658943
  • Stevens D, Gassmann R, Oegema K, Desai A. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS One 2011; 6:e22969; http://dx.doi.org/10.1371/journal.pone.0022969; PMID: 21829677
  • Pearson CG, Bloom K. Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 2004; 5:481 - 92; http://dx.doi.org/10.1038/nrm1402; PMID: 15173827
  • Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 2011; 22:3070 - 80; http://dx.doi.org/10.1091/mbc.E11-04-0363; PMID: 21737685
  • Samora CP, Mogessie B, Conway L, Ross JL, Straube A, McAinsh AD. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat Cell Biol 2011; 13:1040 - 50; http://dx.doi.org/10.1038/ncb2297; PMID: 21822276
  • Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, López MP, et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012; 148:502 - 14; http://dx.doi.org/10.1016/j.cell.2012.01.007; PMID: 22304918
  • O’Connell CB, Wang YL. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell 2000; 11:1765 - 74; PMID: 10793150
  • Peyre E, Jaouen F, Saadaoui M, Haren L, Merdes A, Durbec P, et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J Cell Biol 2011; 193:141 - 54; http://dx.doi.org/10.1083/jcb.201101039; PMID: 21444683
  • Kiyomitsu T, Cheeseman IM. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 2012; 14:311 - 7; http://dx.doi.org/10.1038/ncb2440; PMID: 22327364
  • Woodard GE, Huang NN, Cho H, Miki T, Tall GG, Kehrl JH. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol Cell Biol 2010; 30:3519 - 30; http://dx.doi.org/10.1128/MCB.00394-10; PMID: 20479129
  • Du Q, Macara IG. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004; 119:503 - 16; http://dx.doi.org/10.1016/j.cell.2004.10.028; PMID: 15537540
  • Matsumura S, Hamasaki M, Yamamoto T, Ebisuya M, Sato M, Nishida E, et al. ABL1 regulates spindle orientation in adherent cells and mammalian skin. Nat Commun 2012; 3:626; http://dx.doi.org/10.1038/ncomms1634; PMID: 22252550
  • Merdes A, Ramyar K, Vechio JD, Cleveland DW. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 1996; 87:447 - 58; http://dx.doi.org/10.1016/S0092-8674(00)81365-3; PMID: 8898198
  • Sakai D, Dixon J, Dixon MJ, Trainor PA. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells. PLoS Genet 2012; 8:e1002566; http://dx.doi.org/10.1371/journal.pgen.1002566; PMID: 22479190
  • Wee B, Johnston CA, Prehoda KE, Doe CQ. Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation. J Cell Biol 2011; 195:369 - 76; http://dx.doi.org/10.1083/jcb.201102130; PMID: 22024168
  • Petronczki M, Léńrt P, Peters JM. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev Cell 2008; 14:646 - 59; http://dx.doi.org/10.1016/j.devcel.2008.04.014; PMID: 18477449
  • Seki A, Coppinger JA, Jang CY, Yates JR, Fang G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008; 320:1655 - 8; http://dx.doi.org/10.1126/science.1157425; PMID: 18566290
  • Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008; 455:119 - 23; http://dx.doi.org/10.1038/nature07185; PMID: 18615013
  • Carmena M, Pinson X, Platani M, Salloum Z, Xu Z, Clark A, et al. The chromosomal passenger complex activates Polo kinase at centromeres. PLoS Biol 2012; 10:e1001250; http://dx.doi.org/10.1371/journal.pbio.1001250; PMID: 22291575
  • Ji JH, Hwang HI, Lee HJ, Hyun SY, Kang HJ, Jang YJ. Purification and proteomic identification of putative upstream regulators of polo-like kinase-1 from mitotic cell extracts. FEBS Lett 2010; 584:4299 - 305; http://dx.doi.org/10.1016/j.febslet.2010.09.025; PMID: 20869364