1,793
Views
29
CrossRef citations to date
0
Altmetric
Everything You Need To Know About...

Myosins in cell junctions

&
Pages 158-170 | Received 11 Jul 2012, Accepted 08 Aug 2012, Published online: 01 Sep 2012

References

  • Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 2011; 27:133 - 55; http://dx.doi.org/10.1146/annurev-cellbio-100809-151502; PMID: 21639800
  • Woolner S, Bement WM. Unconventional myosins acting unconventionally. Trends Cell Biol 2009; 19:245 - 52; http://dx.doi.org/10.1016/j.tcb.2009.03.003; PMID: 19406643
  • Berg JS, Powell BC, Cheney RE. A millennial myosin census. Mol Biol Cell 2001; 12:780 - 94; PMID: 11294886
  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10:778 - 90; http://dx.doi.org/10.1038/nrm2786; PMID: 19851336
  • Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006; 68:403 - 29; http://dx.doi.org/10.1146/annurev.physiol.68.040104.131404; PMID: 16460278
  • Fanning AS, Anderson JM. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009; 1165:113 - 20; http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x; PMID: 19538295
  • Nelson WJ. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 2008; 36:149 - 55; http://dx.doi.org/10.1042/BST0360149; PMID: 18363555
  • Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11:502 - 14; http://dx.doi.org/10.1038/nrm2927; PMID: 20571587
  • Hirokawa N, Keller TC 3rd, Chasan R, Mooseker MS. Mechanism of brush border contractility studied by the quick-freeze, deep-etch method. J Cell Biol 1983; 96:1325 - 36; http://dx.doi.org/10.1083/jcb.96.5.1325; PMID: 6601660
  • Madara JL. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 1987; 253:C171 - 5; PMID: 3605327
  • Drenckhahn D, Dermietzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol 1988; 107:1037 - 48; http://dx.doi.org/10.1083/jcb.107.3.1037; PMID: 3417773
  • Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell 2005; 16:2636 - 50; http://dx.doi.org/10.1091/mbc.E05-01-0043; PMID: 15800060
  • Kametani Y, Takeichi M. Basal-to-apical cadherin flow at cell junctions. Nat Cell Biol 2007; 9:92 - 8; http://dx.doi.org/10.1038/ncb1520; PMID: 17159998
  • Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 1978; 77:853 - 80; http://dx.doi.org/10.1083/jcb.77.3.853; PMID: 567227
  • Ivanov AI, McCall IC, Parkos CA, Nusrat A. Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 2004; 15:2639 - 51; http://dx.doi.org/10.1091/mbc.E04-02-0163; PMID: 15047870
  • Vasioukhin V, Bauer C, Yin M, Fuchs E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000; 100:209 - 19; http://dx.doi.org/10.1016/S0092-8674(00)81559-7; PMID: 10660044
  • Ando-Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S. Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. J Cell Physiol 1999; 179:115 - 25; http://dx.doi.org/10.1002/(SICI)1097-4652(199905)179:2<115::AID-JCP1>3.0.CO;2-T; PMID: 10199550
  • Madara JL, Barenberg D, Carlson S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 1986; 102:2125 - 36; http://dx.doi.org/10.1083/jcb.102.6.2125; PMID: 3711143
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004; 286:C1213 - 28; http://dx.doi.org/10.1152/ajpcell.00558.2003; PMID: 15151915
  • Niessen CM, Gottardi CJ. Molecular components of the adherens junction. Biochim Biophys Acta 2008; 1778:562 - 71; http://dx.doi.org/10.1016/j.bbamem.2007.12.015; PMID: 18206110
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123:889 - 901; http://dx.doi.org/10.1016/j.cell.2005.09.020; PMID: 16325582
  • Yonemura S. Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 2011; 23:515 - 22; http://dx.doi.org/10.1016/j.ceb.2011.07.001; PMID: 21807490
  • Gomez GA, McLachlan RW, Yap AS. Productive tension: force-sensing and homeostasis of cell-cell junctions. Trends Cell Biol 2011; 21:499 - 505; http://dx.doi.org/10.1016/j.tcb.2011.05.006; PMID: 21763139
  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 2010; 107:9944 - 9; http://dx.doi.org/10.1073/pnas.0914547107; PMID: 20463286
  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 2010; 12:533 - 42; http://dx.doi.org/10.1038/ncb2055; PMID: 20453849
  • Taguchi K, Ishiuchi T, Takeichi M. Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J Cell Biol 2011; 194:643 - 56; http://dx.doi.org/10.1083/jcb.201104124; PMID: 21844208
  • Simons M, Wang M, McBride OW, Kawamoto S, Yamakawa K, Gdula D, et al. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res 1991; 69:530 - 9; http://dx.doi.org/10.1161/01.RES.69.2.530; PMID: 1860190
  • Golomb E, Ma X, Jana SS, Preston YA, Kawamoto S, Shoham NG, et al. Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 2004; 279:2800 - 8; http://dx.doi.org/10.1074/jbc.M309981200; PMID: 14594953
  • Wilkinson S, Paterson HF, Marshall CJ. Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005; 7:255 - 61; http://dx.doi.org/10.1038/ncb1230; PMID: 15723050
  • Wang F, Kovacs M, Hu A, Limouze J, Harvey EV, Sellers JR. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J Biol Chem 2003; 278:27439 - 48; http://dx.doi.org/10.1074/jbc.M302510200; PMID: 12704189
  • Kovács M, Wang F, Hu A, Zhang Y, Sellers JR. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J Biol Chem 2003; 278:38132 - 40; http://dx.doi.org/10.1074/jbc.M305453200; PMID: 12847096
  • Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR. Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 2004; 279:35557 - 63; http://dx.doi.org/10.1074/jbc.M405319200; PMID: 15205456
  • Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 2005; 16:4531 - 42; http://dx.doi.org/10.1091/mbc.E05-04-0330; PMID: 16030252
  • Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 2006; 119:2095 - 106; http://dx.doi.org/10.1242/jcs.02915; PMID: 16638813
  • Ivanov AI. Actin motors that drive formation and disassembly of epithelial apical junctions. Front Biosci 2008; 13:6662 - 81; http://dx.doi.org/10.2741/3180; PMID: 18508686
  • Conti MA, Even-Ram S, Liu C, Yamada KM, Adelstein RS. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem 2004; 279:41263 - 6; http://dx.doi.org/10.1074/jbc.C400352200; PMID: 15292239
  • Ma X, Bao J, Adelstein RS. Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 2007; 18:2305 - 12; http://dx.doi.org/10.1091/mbc.E07-01-0073; PMID: 17429076
  • Ivanov AI, Bachar M, Babbin BA, Adelstein RS, Nusrat A, Parkos CA. A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS One 2007; 2:e658; http://dx.doi.org/10.1371/journal.pone.0000658; PMID: 17668046
  • Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, et al. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 2010; 12:696 - 702; http://dx.doi.org/10.1038/ncb2072; PMID: 20543839
  • Smutny M, Wu SK, Gomez GA, Mangold S, Yap AS, Hamilton NA. Multicomponent analysis of junctional movements regulated by myosin II isoforms at the epithelial zonula adherens. PLoS One 2011; 6:e22458; http://dx.doi.org/10.1371/journal.pone.0022458; PMID: 21799860
  • Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, et al. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 1999; 147:1569 - 82; http://dx.doi.org/10.1083/jcb.147.7.1569; PMID: 10613913
  • Fanning AS, Van Itallie CM, Anderson JM. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 2012; 23:577 - 90; http://dx.doi.org/10.1091/mbc.E11-09-0791; PMID: 22190737
  • le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 2010; 189:1107 - 15; http://dx.doi.org/10.1083/jcb.201001149; PMID: 20584916
  • Martin AC, Kaschube M, Wieschaus EF. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009; 457:495 - 9; http://dx.doi.org/10.1038/nature07522; PMID: 19029882
  • Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US, et al. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 2012; 335:1232 - 5; http://dx.doi.org/10.1126/science.1217869; PMID: 22323741
  • Soldati T. Unconventional myosins, actin dynamics and endocytosis: a ménage à trois?. Traffic 2003; 4:358 - 66; http://dx.doi.org/10.1034/j.1600-0854.2003.t01-1-00095.x; PMID: 12753645
  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS. Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 2005; 16:2443 - 57; http://dx.doi.org/10.1091/mbc.E04-12-1116; PMID: 15758024
  • Bement WM, Wirth JA, Mooseker MS. Cloning and mRNA expression of human unconventional myosin-IC. A homologue of amoeboid myosins-I with a single IQ motif and an SH3 domain. J Mol Biol 1994; 243:356 - 63; http://dx.doi.org/10.1006/jmbi.1994.1662; PMID: 7932763
  • Bement WM, Hasson T, Wirth JA, Cheney RE, Mooseker MS. Identification and overlapping expression of multiple unconventional myosin genes in vertebrate cell types. Proc Natl Acad Sci U S A 1994; 91:6549 - 53; http://dx.doi.org/10.1073/pnas.91.14.6549; PMID: 8022818
  • Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, et al, PodoNet Consortium. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011; 365:295 - 306; http://dx.doi.org/10.1056/NEJMoa1101273; PMID: 21756023
  • Skowron JF, Bement WM, Mooseker MS. Human brush border myosin-I and myosin-Ic expression in human intestine and Caco-2BBe cells. Cell Motil Cytoskeleton 1998; 41:308 - 24; http://dx.doi.org/10.1002/(SICI)1097-0169(1998)41:4<308::AID-CM4>3.0.CO;2-J; PMID: 9858156
  • Krendel M, Kim SV, Willinger T, Wang T, Kashgarian M, Flavell RA, et al. Disruption of Myosin 1e promotes podocyte injury. J Am Soc Nephrol 2009; 20:86 - 94; http://dx.doi.org/10.1681/ASN.2007111172; PMID: 19005011
  • Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007; 17:428 - 37; http://dx.doi.org/10.1016/j.tcb.2007.06.006; PMID: 17804239
  • Jung G, Wu X, Hammer JA 3rd. Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. [see comments] J Cell Biol 1996; 133:305 - 23; http://dx.doi.org/10.1083/jcb.133.2.305; PMID: 8609164
  • Novak KD, Peterson MD, Reedy MC, Titus MA. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 1995; 131:1205 - 21; http://dx.doi.org/10.1083/jcb.131.5.1205; PMID: 8522584
  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, et al. Myosin VI is an actin-based motor that moves backwards. Nature 1999; 401:505 - 8; http://dx.doi.org/10.1038/46835; PMID: 10519557
  • Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 1997; 139:397 - 415; http://dx.doi.org/10.1083/jcb.139.2.397; PMID: 9334344
  • Buss F, Kendrick-Jones J, Lionne C, Knight AE, Côté GP, Paul Luzio J. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 1998; 143:1535 - 45; http://dx.doi.org/10.1083/jcb.143.6.1535; PMID: 9852149
  • Rock RS, Rice SE, Wells AL, Purcell TJ, Spudich JA, Sweeney HL. Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 2001; 98:13655 - 9; http://dx.doi.org/10.1073/pnas.191512398; PMID: 11707568
  • Phichith D, Travaglia M, Yang Z, Liu X, Zong AB, Safer D, et al. Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A 2009; 106:17320 - 4; http://dx.doi.org/10.1073/pnas.0909748106; PMID: 19805065
  • Robblee JP, Olivares AO, de la Cruz EM. Mechanism of nucleotide binding to actomyosin VI: evidence for allosteric head-head communication. J Biol Chem 2004; 279:38608 - 17; http://dx.doi.org/10.1074/jbc.M403504200; PMID: 15247304
  • Buss F, Luzio JP, Kendrick-Jones J. Myosin VI, a new force in clathrin mediated endocytosis. FEBS Lett 2001; 508:295 - 9; http://dx.doi.org/10.1016/S0014-5793(01)03065-4; PMID: 11728438
  • Hasson T. Myosin VI: two distinct roles in endocytosis. J Cell Sci 2003; 116:3453 - 61; http://dx.doi.org/10.1242/jcs.00669; PMID: 12893809
  • Au JS, Puri C, Ihrke G, Kendrick-Jones J, Buss F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol 2007; 177:103 - 14; http://dx.doi.org/10.1083/jcb.200608126; PMID: 17403927
  • Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, et al. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 2003; 72:1315 - 22; http://dx.doi.org/10.1086/375122; PMID: 12687499
  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, et al. The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 1995; 11:369 - 75; http://dx.doi.org/10.1038/ng1295-369; PMID: 7493015
  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP. Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 1999; 214:331 - 41; http://dx.doi.org/10.1006/dbio.1999.9424; PMID: 10525338
  • Hegan PS, Giral H, Levi M, Mooseker MS. Myosin VI is required for maintenance of brush border structure, composition, and membrane trafficking functions in the intestinal epithelial cell. Cytoskeleton (Hoboken) 2012; 69:235 - 51; http://dx.doi.org/10.1002/cm.21018; PMID: 22328452
  • Lin HP, Chen HM, Wei SY, Chen LY, Chang LH, Sun YJ, et al. Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Dev Biol 2007; 311:423 - 33; http://dx.doi.org/10.1016/j.ydbio.2007.08.043; PMID: 17936269
  • Millo H, Leaper K, Lazou V, Bownes M. Myosin VI plays a role in cell-cell adhesion during epithelial morphogenesis. Mech Dev 2004; 121:1335 - 51; http://dx.doi.org/10.1016/j.mod.2004.06.007; PMID: 15454264
  • Deng W, Leaper K, Bownes M. A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis. J Cell Sci 1999; 112:3677 - 90; PMID: 10523504
  • Geisbrecht ER, Montell DJ. Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 2002; 4:616 - 20; PMID: 12134162
  • Maddugoda MP, Crampton MS, Shewan AM, Yap AS. Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J Cell Biol 2007; 178:529 - 40; http://dx.doi.org/10.1083/jcb.200612042; PMID: 17664339
  • Wei SY, Escudero LM, Yu F, Chang LH, Chen LY, Ho YH, et al. Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev Cell 2005; 8:493 - 504; http://dx.doi.org/10.1016/j.devcel.2005.03.015; PMID: 15809032
  • Noguchi T, Lenartowska M, Miller KG. Myosin VI stabilizes an actin network during Drosophila spermatid individualization. Mol Biol Cell 2006; 17:2559 - 71; http://dx.doi.org/10.1091/mbc.E06-01-0031; PMID: 16571671
  • Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, et al. Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol 2004; 272:328 - 38; http://dx.doi.org/10.1016/j.ydbio.2004.05.004; PMID: 15282151
  • Mangold S, Wu SK, Norwood SJ, Collins BM, Hamilton NA, Thorn P, et al. Hepatocyte growth factor acutely perturbs actin filament anchorage at the epithelial zonula adherens. Curr Biol 2011; 21:503 - 7; http://dx.doi.org/10.1016/j.cub.2011.02.018; PMID: 21396819
  • Yonezawa S, Yoshizaki N, Sano M, Hanai A, Masaki S, Takizawa T, et al. Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev Growth Differ 2003; 45:175 - 85; http://dx.doi.org/10.1034/j.1600-0854.2004.00688.x; PMID: 12752505
  • Zhang H, Berg JS, Li Z, Wang Y, Lång P, Sousa AD, et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 2004; 6:523 - 31; http://dx.doi.org/10.1038/ncb1136; PMID: 15156152
  • Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, et al. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 2010; 19:3557 - 65; http://dx.doi.org/10.1093/hmg/ddq271; PMID: 20639393
  • Wu L, Pan L, Wei Z, Zhang M. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 2011; 331:757 - 60; http://dx.doi.org/10.1126/science.1198848; PMID: 21311020
  • Umeki N, Jung HS, Watanabe S, Sakai T, Li XD, Ikebe R, et al. The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc Natl Acad Sci U S A 2009; 106:8483 - 8; http://dx.doi.org/10.1073/pnas.0812930106; PMID: 19423668
  • Yang Y, Kovács M, Sakamoto T, Zhang F, Kiehart DP, Sellers JR. Dimerized Drosophila myosin VIIa: a processive motor. Proc Natl Acad Sci U S A 2006; 103:5746 - 51; http://dx.doi.org/10.1073/pnas.0509935103; PMID: 16585515
  • Sakai T, Umeki N, Ikebe R, Ikebe M. Cargo binding activates myosin VIIA motor function in cells. Proc Natl Acad Sci U S A 2011; 108:7028 - 33; http://dx.doi.org/10.1073/pnas.1009188108; PMID: 21482763
  • Watanabe S, Ikebe R, Ikebe M. Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J Biol Chem 2006; 281:7151 - 60; http://dx.doi.org/10.1074/jbc.M511592200; PMID: 16415346
  • Haithcock J, Billington N, Choi K, Fordham J, Sellers JR, Stafford WF, et al. The kinetic mechanism of mouse myosin VIIA. J Biol Chem 2011; 286:8819 - 28; http://dx.doi.org/10.1074/jbc.M110.163592; PMID: 21212272
  • Sahly I, El-Amraoui A, Abitbol M, Petit C, Dufier JL. Expression of myosin VIIA during mouse embryogenesis. Anat Embryol (Berl) 1997; 196:159 - 70; http://dx.doi.org/10.1007/s004290050088; PMID: 9278160
  • Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS. Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci U S A 1995; 92:9815 - 9; http://dx.doi.org/10.1073/pnas.92.21.9815; PMID: 7568224
  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374:60 - 1; http://dx.doi.org/10.1038/374060a0; PMID: 7870171
  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 1995; 374:62 - 4; http://dx.doi.org/10.1038/374062a0; PMID: 7870172
  • Chen ZY, Hasson T, Kelley PM, Schwender BJ, Schwartz MF, Ramakrishnan M, et al. Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics 1996; 36:440 - 8; http://dx.doi.org/10.1006/geno.1996.0489; PMID: 8884267
  • Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 1998; 125:557 - 66; PMID: 9435277
  • Bolz H, von Brederlow B, Ramírez A, Bryda EC, Kutsche K, Nothwang HG, et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 2001; 27:108 - 12; http://dx.doi.org/10.1038/83667; PMID: 11138009
  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 2001; 27:103 - 7; http://dx.doi.org/10.1038/83660; PMID: 11138008
  • Boëda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 2002; 21:6689 - 99; http://dx.doi.org/10.1093/emboj/cdf689; PMID: 12485990
  • Senften M, Schwander M, Kazmierczak P, Lillo C, Shin JB, Hasson T, et al. Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J Neurosci 2006; 26:2060 - 71; http://dx.doi.org/10.1523/JNEUROSCI.4251-05.2006; PMID: 16481439
  • Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449:87 - 91; http://dx.doi.org/10.1038/nature06091; PMID: 17805295
  • Kiehart DP, Franke JD, Chee MK, Montague RA, Chen TL, Roote J, et al. Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes fly myosin VIIA. Genetics 2004; 168:1337 - 52; http://dx.doi.org/10.1534/genetics.104.026369; PMID: 15579689
  • Todi SV, Franke JD, Kiehart DP, Eberl DF. Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr Biol 2005; 15:862 - 8; http://dx.doi.org/10.1016/j.cub.2005.03.050; PMID: 15886106
  • Sousa S, Cabanes D, El-Amraoui A, Petit C, Lecuit M, Cossart P. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J Cell Sci 2004; 117:2121 - 30; http://dx.doi.org/10.1242/jcs.01066; PMID: 15090598
  • Küssel-Andermann P, El-Amraoui A, Safieddine S, Nouaille S, Perfettini I, Lecuit M, et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J 2000; 19:6020 - 9; http://dx.doi.org/10.1093/emboj/19.22.6020; PMID: 11080149
  • Velichkova M, Guttman J, Warren C, Eng L, Kline K, Vogl AW, et al. A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil Cytoskeleton 2002; 51:147 - 64; http://dx.doi.org/10.1002/cm.10025; PMID: 11921171
  • Etournay R, Zwaenepoel I, Perfettini I, Legrain P, Petit C, El-Amraoui A. Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J Cell Sci 2007; 120:2838 - 50; http://dx.doi.org/10.1242/jcs.002568; PMID: 17666436
  • Liao W, Elfrink K, Bähler M. Head of myosin IX binds calmodulin and moves processively toward the plus-end of actin filaments. J Biol Chem 2010; 285:24933 - 42; http://dx.doi.org/10.1074/jbc.M110.101105; PMID: 20538589
  • Bähler M, Elfrink K, Hanley PJ, Thelen S, Xu Y. Cellular functions of class IX myosins in epithelia and immune cells. Biochem Soc Trans 2011; 39:1166 - 8; http://dx.doi.org/10.1042/BST0391166; PMID: 21936783
  • Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bähler M. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J 1995; 14:697 - 704; PMID: 7882973
  • Chieregatti E, Gärtner A, Stöffler HE, Bähler M. Myr 7 is a novel myosin IX-RhoGAP expressed in rat brain. J Cell Sci 1998; 111:3597 - 608; PMID: 9819351
  • Müller RT, Honnert U, Reinhard J, Bähler M. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 1997; 8:2039 - 53; PMID: 9348541
  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21:247 - 69; http://dx.doi.org/10.1146/annurev.cellbio.21.020604.150721; PMID: 16212495
  • Ridley AJ. Rho: theme and variations. Curr Biol 1996; 6:1256 - 64; http://dx.doi.org/10.1016/S0960-9822(02)70711-2; PMID: 8939567
  • Braga VM, Yap AS. The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol 2005; 17:466 - 74; http://dx.doi.org/10.1016/j.ceb.2005.08.012; PMID: 16112561
  • Terry SJ, Zihni C, Elbediwy A, Vitiello E, Leefa Chong San IV, Balda MS, et al. Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 2011; 13:159 - 66; http://dx.doi.org/10.1038/ncb2156; PMID: 21258369
  • Abouhamed M, Grobe K, San IV, Thelen S, Honnert U, Balda MS, et al. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol Biol Cell 2009; 20:5074 - 85; http://dx.doi.org/10.1091/mbc.E09-04-0291; PMID: 19828736
  • Gorman SW, Haider NB, Grieshammer U, Swiderski RE, Kim E, Welch JW, et al. The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22-q23. Genomics 1999; 59:150 - 60; http://dx.doi.org/10.1006/geno.1999.5867; PMID: 10409426
  • Omelchenko T, Hall A. Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Curr Biol 2012; 22:278 - 88; http://dx.doi.org/10.1016/j.cub.2012.01.014; PMID: 22305756
  • Monsuur AJ, de Bakker PI, Alizadeh BZ, Zhernakova A, Bevova MR, Strengman E, et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005; 37:1341 - 4; http://dx.doi.org/10.1038/ng1680; PMID: 16282976
  • van Bodegraven AA, Curley CR, Hunt KA, Monsuur AJ, Linskens RK, Onnie CM, et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology 2006; 131:1768 - 74; http://dx.doi.org/10.1053/j.gastro.2006.09.011; PMID: 17087940
  • Cooney R, Cummings JR, Pathan S, Beckly J, Geremia A, Hancock L, et al. Association between genetic variants in myosin IXB and Crohn’s disease. Inflamm Bowel Dis 2009; 15:1014 - 21; http://dx.doi.org/10.1002/ibd.20885; PMID: 19235913
  • Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004; 84:282 - 91; http://dx.doi.org/10.1038/labinvest.3700050; PMID: 14767487
  • van den Boom F, Düssmann H, Uhlenbrock K, Abouhamed M, Bähler M. The Myosin IXb motor activity targets the myosin IXb RhoGAP domain as cargo to sites of actin polymerization. Mol Biol Cell 2007; 18:1507 - 18; http://dx.doi.org/10.1091/mbc.E06-08-0771; PMID: 17314409
  • Chandhoke SK, Mooseker MS. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol Biol Cell 2012; 23:2468 - 80; http://dx.doi.org/10.1091/mbc.E11-09-0803; PMID: 22573889
  • Hanley PJ, Xu Y, Kronlage M, Grobe K, Schön P, Song J, et al. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc Natl Acad Sci U S A 2010; 107:12145 - 50; http://dx.doi.org/10.1073/pnas.0911986107; PMID: 20566876
  • Plantard L, Arjonen A, Lock JG, Nurani G, Ivaska J, Strömblad S. PtdIns(3,4,5)P₃ is a regulator of myosin-X localization and filopodia formation. J Cell Sci 2010; 123:3525 - 34; http://dx.doi.org/10.1242/jcs.069609; PMID: 20930142
  • Umeki N, Jung HS, Sakai T, Sato O, Ikebe R, Ikebe M. Phospholipid-dependent regulation of the motor activity of myosin X. Nat Struct Mol Biol 2011; 18:783 - 8; http://dx.doi.org/10.1038/nsmb.2065; PMID: 21666676
  • Lu Q, Yu J, Yan J, Wei Z, Zhang M. Structural basis of the myosin X PH1(N)-PH2-PH1(C) tandem as a specific and acute cellular PI(3,4,5)P(3) sensor. Mol Biol Cell 2011; 22:4268 - 78; http://dx.doi.org/10.1091/mbc.E11-04-0354; PMID: 21965296
  • Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 2004; 431:325 - 9; http://dx.doi.org/10.1038/nature02834; PMID: 15372037
  • Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 2000; 113:3439 - 51; PMID: 10984435
  • Rogers MS, Strehler EE. The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J Biol Chem 2001; 276:12182 - 9; http://dx.doi.org/10.1074/jbc.M010056200; PMID: 11278607
  • Bohil AB, Robertson BW, Cheney RE. Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 2006; 103:12411 - 6; http://dx.doi.org/10.1073/pnas.0602443103; PMID: 16894163
  • Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE. Myosin-X functions in polarized epithelial cells. Mol Biol Cell 2012; 23:1675 - 87; http://dx.doi.org/10.1091/mbc.E11-04-0358; PMID: 22419816
  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 2007; 128:383 - 97; http://dx.doi.org/10.1016/j.cell.2006.11.051; PMID: 17254974
  • McNeil E, Capaldo CT, Macara IG. Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2006; 17:1922 - 32; http://dx.doi.org/10.1091/mbc.E05-07-0650; PMID: 16436508
  • Capaldo CT, Macara IG. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2007; 18:189 - 200; http://dx.doi.org/10.1091/mbc.E06-05-0471; PMID: 17093058
  • Almagro S, Durmort C, Chervin-Pétinot A, Heyraud S, Dubois M, Lambert O, et al. The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol Cell Biol 2010; 30:1703 - 17; http://dx.doi.org/10.1128/MCB.01226-09; PMID: 20123970
  • Jaffe AB, Kaji N, Durgan J, Hall A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 2008; 183:625 - 33; http://dx.doi.org/10.1083/jcb.200807121; PMID: 19001128
  • Rodriguez-Fraticelli AE, Vergarajauregui S, Eastburn DJ, Datta A, Alonso MA, Mostov K, et al. The Cdc42 GEF Intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J Cell Biol 2010; 189:725 - 38; http://dx.doi.org/10.1083/jcb.201002047; PMID: 20479469
  • Zheng Z, Zhu H, Wan Q, Liu J, Xiao Z, Siderovski DP, et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis. J Cell Biol 2010; 189:275 - 88; http://dx.doi.org/10.1083/jcb.200910021; PMID: 20385777
  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008; 22:2189 - 203; http://dx.doi.org/10.1101/gad.1700908; PMID: 18662975
  • Toyoshima F, Nishida E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 2007; 26:1487 - 98; http://dx.doi.org/10.1038/sj.emboj.7601599; PMID: 17318179
  • Woolner S, O’Brien LL, Wiese C, Bement WM. Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 2008; 182:77 - 88; http://dx.doi.org/10.1083/jcb.200804062; PMID: 18606852
  • Woolner S, Papalopulu N. Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev Cell 2012; 22:775 - 87; http://dx.doi.org/10.1016/j.devcel.2012.01.002; PMID: 22406140
  • Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 1999; 61:243 - 58; http://dx.doi.org/10.1006/geno.1999.5976; PMID: 10552926
  • Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 2003; 100:13958 - 63; http://dx.doi.org/10.1073/pnas.2334417100; PMID: 14610277
  • Lloyd RV, Vidal S, Jin L, Zhang S, Kovacs K, Horvath E, et al. Myosin XVA expression in the pituitary and in other neuroendocrine tissues and tumors. Am J Pathol 2001; 159:1375 - 82; http://dx.doi.org/10.1016/S0002-9440(10)62524-2; PMID: 11583965
  • Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 1998; 280:1447 - 51; http://dx.doi.org/10.1126/science.280.5368.1447; PMID: 9603736
  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 1998; 280:1444 - 7; http://dx.doi.org/10.1126/science.280.5368.1444; PMID: 9603735
  • Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 2005; 7:148 - 56; http://dx.doi.org/10.1038/ncb1219; PMID: 15654330
  • Ebermann I, Scholl HP, Charbel Issa P, Becirovic E, Lamprecht J, Jurklies B, et al. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 2007; 121:203 - 11; http://dx.doi.org/10.1007/s00439-006-0304-0; PMID: 17171570
  • Manor U, Disanza A, Grati M, Andrade L, Lin H, Di Fiore PP, et al. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin-regulatory protein Eps8. Curr Biol 2011; 21:167 - 72; http://dx.doi.org/10.1016/j.cub.2010.12.046; PMID: 21236676
  • Liu R, Woolner S, Johndrow JE, Metzger D, Flores A, Parkhurst SM. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 2008; 135:53 - 63; http://dx.doi.org/10.1242/dev.011437; PMID: 18045836
  • Bridges C, Morgan T. Contributions to the genetics of Drosophila melanogaster. II. The second-chromosome group of mutant characters. Carnegie Inst Washington Publ 1919; 278:123 - 304
  • Tzolovsky G, Millo H, Pathirana S, Wood T, Bownes M. Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol Biol Evol 2002; 19:1041 - 52; http://dx.doi.org/10.1093/oxfordjournals.molbev.a004163; PMID: 12082124
  • Mao Y, Rauskolb C, Cho E, Hu WL, Hayter H, Minihan G, et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 2006; 133:2539 - 51; http://dx.doi.org/10.1242/dev.02427; PMID: 16735478
  • Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ. Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila. Genes Dev 2011; 25:131 - 6; http://dx.doi.org/10.1101/gad.610511; PMID: 21245166
  • Rogulja D, Rauskolb C, Irvine KD. Morphogen control of wing growth through the Fat signaling pathway. Dev Cell 2008; 15:309 - 21; http://dx.doi.org/10.1016/j.devcel.2008.06.003; PMID: 18694569
  • Waddington C. The genetic control of wing development in Drosophila. J Genet 1940; 41:75 - 113; http://dx.doi.org/10.1007/BF02982977
  • den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 2009; 20:3740 - 50; http://dx.doi.org/10.1091/mbc.E09-01-0023; PMID: 19553471
  • Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 1991; 67:853 - 68; http://dx.doi.org/10.1016/0092-8674(91)90359-7; PMID: 1959133
  • Bosveld F, Bonnet I, Guirao B, Tlili S, Wang Z, Petitalot A, et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 2012; 336:724 - 7; http://dx.doi.org/10.1126/science.1221071; PMID: 22499807