787
Views
5
CrossRef citations to date
0
Altmetric
Addendum

Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction

, , &
Pages 123-128 | Received 19 Jun 2013, Accepted 23 Sep 2013, Published online: 26 Sep 2013

References

  • Cordier H, Mendes F, Vasconcelos I, François JM. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng 2007; 9:364 - 78; http://dx.doi.org/10.1016/j.ymben.2007.03.002; PMID: 17500021
  • van Maris AJ, Winkler AA, Porro D, van Dijken JP, Pronk JT. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 2004; 70:2898 - 905; http://dx.doi.org/10.1128/AEM.70.5.2898-2905.2004; PMID: 15128549
  • Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 2009; 82:883 - 90; http://dx.doi.org/10.1007/s00253-008-1831-5; PMID: 19122995
  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 2010; 85:413 - 23; http://dx.doi.org/10.1007/s00253-009-2280-5; PMID: 19826806
  • Bakker BM, Overkamp KM, Kötter P, Luttik MA, Pronk JT, van Dijken JP, et al, van Maris AJ, van Dijken JP. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.. FEMS Microbiol Rev 2001; 25:15 - 37; http://dx.doi.org/10.1111/j.1574-6976.2001.tb00570.x; PMID: 11152939
  • Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae.. J Biosci Bioeng 2012; 113:192 - 5; http://dx.doi.org/10.1016/j.jbiosc.2011.09.019; PMID: 22033067
  • Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 2013; 97:4811 - 9; http://dx.doi.org/10.1007/s00253-013-4760-x; PMID: 23435983
  • Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttilä M, Maaheimo H. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2008; 2:60; http://dx.doi.org/10.1186/1752-0509-2-60; PMID: 18613954
  • de Smidt O, du Preez JC, Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 2008; 8:967 - 78; http://dx.doi.org/10.1111/j.1567-1364.2008.00387.x; PMID: 18479436
  • Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2010; 76:190 - 5; http://dx.doi.org/10.1128/AEM.01772-09; PMID: 19915031
  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997; 16:2179 - 87; http://dx.doi.org/10.1093/emboj/16.9.2179; PMID: 9171333
  • Pettit SM, Nealon DA, Henderson AR. Purification of lactate dehydrogenase isoenzyme-5 from human liver. Clin Chem 1981; 27:88 - 93; PMID: 7449128
  • Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev 1980; 44:106 - 39; PMID: 6997721
  • LeVan KM, Goldberg E. Properties of human testis-specific lactate dehydrogenase expressed from Escherichia coli. Biochem J 1991; 273:587 - 92; PMID: 1996957
  • Blazeck J, Alper H. Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 2010; 5:647 - 59; http://dx.doi.org/10.1002/biot.200900247; PMID: 20151446
  • Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009; 5:320; http://dx.doi.org/10.1038/msb.2009.77; PMID: 19888215
  • Park JM, Kim TY, Lee SY. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 2009; 27:979 - 88; http://dx.doi.org/10.1016/j.biotechadv.2009.05.019; PMID: 19464354
  • Duarte NC, Herrgård MJ, Palsson BO. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004; 14:1298 - 309; http://dx.doi.org/10.1101/gr.2250904; PMID: 15197165
  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 2012; 8:536 - 46; http://dx.doi.org/10.1038/nchembio.970; PMID: 22596205
  • Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 2012; 14:233 - 41; http://dx.doi.org/10.1016/j.ymben.2012.02.001; PMID: 22629571
  • Chatsurachai S, Furusawa C, Shimizu H. ArtPathDesign: Rational heterologous pathway design system for the production of nonnative metabolites. J Biosci Bioeng 2013; 116:524 - 7; http://dx.doi.org/10.1016/j.jbiosc.2013.04.002; PMID: 23664926
  • Athenstaedt K, Weys S, Paltauf F, Daum G. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.. J Bacteriol 1999; 181:1458 - 63; PMID: 10049376
  • Racenis PV, Lai JL, Das AK, Mullick PC, Hajra AK, Greenberg ML. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae.. J Bacteriol 1992; 174:5702 - 10; PMID: 1512203
  • Tillman TS, Bell RM. Mutants of Saccharomyces cerevisiae defective in sn-glycerol-3-phosphate acyltransferase. Simultaneous loss of dihydroxyacetone phosphate acyltransferase indicates a common gene. J Biol Chem 1986; 261:9144 - 9; PMID: 3522586
  • Zheng Z, Zou J. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae.. J Biol Chem 2001; 276:41710 - 6; http://dx.doi.org/10.1074/jbc.M104749200; PMID: 11544256
  • Seeboth PG, Bohnsack K, Hollenberg CP. pdc1(0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1.. J Bacteriol 1990; 172:678 - 85; PMID: 2404950
  • Kellermann E, Seeboth PG, Hollenberg CP. Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from Saccharomyces cerevisiae.. Nucleic Acids Res 1986; 14:8963 - 77; http://dx.doi.org/10.1093/nar/14.22.8963; PMID: 3537965
  • Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae.. J Bacteriol 1991; 173:7963 - 9; PMID: 1744053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.