6,936
Views
251
CrossRef citations to date
0
Altmetric
Review

Calcium orthophosphates

Occurrence, properties, biomineralization, pathological calcification and biomimetic applications

Pages 121-164 | Published online: 01 Oct 2011

References

  • Shepperd J. The early biological history of calcium phosphates. In: Epinette JA, Manley MT, (Eds.) Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, France 2004; 3-8.
  • Berzelius J. Ueber basische phosphorsaure kalkerde. Ann Chem Pharmac 1845; 53:286 - 8; http://dx.doi.org/10.1002/jlac.18450530212
  • Warington R Jr.. Researches on the phosphates of calcium, and upon the solubility of tricalcic phosphate. J Chem Soc 1866; 19:296 - 318; http://dx.doi.org/10.1039/js8661900296
  • Fresenius R. Ueber die Bestimmung der Phosphorsäure im Phosphorit nebst Mittheilung der Analysen des Phosphorits und Staffelits aus dem Lahnthal. Z Anal Chem 1867; 6:403 - 9; http://dx.doi.org/10.1007/BF01347651
  • Church AH. New analyses of certain mineral arseniates and phosphates. 1. Apatite; 2. Arseniosiderite; 3. Childrenite; 4. Ehlite; 5. Tyrolite; 6. Wavellite. J Chem Soc 1873; 26:101 - 11; http://dx.doi.org/10.1039/js8732600101
  • LWJ. On a fine specimen of apatite from Tyrol, lately in the possession of Mr. Samuel Henson. Nature 1883; 27:608 - 9; http://dx.doi.org/10.1038/027608a0
  • Tereg A. Das Verhalten der Calciumphosphate im Organismus der Fleischfresser. Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere. Pflügers Archiv Eur J Physiology 1883; 32:122 - 70; http://dx.doi.org/10.1007/BF01628854
  • Mohr C. Ueber die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z Anal Chem 1884; 23:487 - 91; http://dx.doi.org/10.1007/BF01360583
  • Glaser C. Bemerkungen zu der Abhandlung des Herrn Carl Mohr über die quantitative Bestimmung der zurückgegangenen Phosphorsäure und der Phosphorsäure im Dicalciumphosphat. Z Anal Chem 1885; 24:180; http://dx.doi.org/10.1007/BF01366673
  • Hutchings WM. Occurrence of apatite in slag. Nature 1887; 36:460; http://dx.doi.org/10.1038/036460a0
  • Hilgenstock G. Eine neue Verbindung von P2O5 und CaO. Stahl und Eisen 1883; 3:498
  • Hilgenstock G. Das vierbasische Kalkphosphat und die Basicitätsstufe des Silicats in der Thomas-Schlacxke. Stahl und Eisen 1887; 7:557 - 60
  • Scheibler C. Ueber die Herstellung reicher Kalkphosphate in Verbindung mit einer Verbesserung des Thomasprocesses. Ber Dtsch Chem Ges 1886; 19:1883 - 93; http://dx.doi.org/10.1002/cber.18860190258
  • Georgievics GV. Über das Verhalten des Tricalciumphosphats gegen Kohlensäure und Eisenhydroxyd. Monatsh Chem 1891; 12:566 - 81; http://dx.doi.org/10.1007/BF01538628
  • Dreesmann H. Ueber Knochenplombierung. Beitr Klin Chir 1892; 9:804 - 10
  • Cameron FK. The action of water upon the phosphates of calcium. J Am Chem Soc 1904; 26:1454 - 63; http://dx.doi.org/10.1021/ja02001a007
  • Cameron FK, Seidell A. The phosphates of calcium. I. J Am Chem Soc 1905; 27:1503 - 12; http://dx.doi.org/10.1021/ja01990a005
  • Cameron FK, Bell JM. The phosphates of calcium. II. J Am Chem Soc 1905; 27:1512 - 4; http://dx.doi.org/10.1021/ja01990a006
  • Cameron FK, Bell JM. The phosphates of calcium, III; Superphosphate. J Am Chem Soc 1906; 28:1222 - 9; http://dx.doi.org/10.1021/ja01975a016
  • Cameron FK, Bell JM. The phosphates of calcium. IV. J Am Chem Soc 1910; 32:869 - 73; http://dx.doi.org/10.1021/ja01925a003
  • Bassett H Jr.. Beiträge zum Studium der Calciumphosphate I. Die Hydrate der Calcium-Hydroorthophosphate. Z Anorg Chem 1907; 53:34 - 48; http://dx.doi.org/10.1002/zaac.19070530104
  • Bassett H Jr.. Beiträge zum Studium der Calciumphosphate II. Die Einwirkung von Ammoniakgas auf Calcium-Hydroorthophosphate Z Anorg Chem 1907; 53:49 - 62
  • Bassett H Jr.. Beiträge zum Studium der Calciumphosphate III. Das System CaO-P2O5-H2O. Z Anorg Chem 1908; 59:1 - 55; http://dx.doi.org/10.1002/zaac.19080590102
  • Bassett H Jr.. The phosphates of calcium. Part IV. The basic phosphates. J Chem Soc 1917; 111:620 - 42
  • Lide DR. The CRC handbook of chemistry and physics. CRC Press, Boca Raton, Florida 2005; 86:2544.
  • LeGeros RZ. Calcium phosphates in oral biology and medicine. Monographs in Oral Science. Karger, Basel 1991; 15:201.
  • Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry; Elsevier: Amsterdam, Netherlands 1994; 18:389.
  • Amjad Z, ed. Calcium phosphates in biological and industrial systems. Kluwer Academic Publishers: Boston MA USA 1997; 529.
  • Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007; 42:1061 - 95; http://dx.doi.org/10.1007/s10853-006-1467-8
  • Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials 2009; 2:399 - 498; http://dx.doi.org/10.3390/ma2020399
  • Ohura K, Bohner M, Hardouin P, Lemaître J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996; 30:193 - 200; http://dx.doi.org/10.1002/(SICI)1097-4636(199602)30:2<193::AID-JBM9>3.0.CO;2-M; PMID: 9019484
  • Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 1997; 172:129 - 91; http://dx.doi.org/10.1016/S0074-7696(08)62360-8; PMID: 9102393
  • Cantelar E, Lifante G, Calderón T, Meléndrez R, Millán A, Alvarez MA, et al. Optical characterisation of rare earths in natural fluorapatite. J Alloy Comp 2001; 323:851 - 4; http://dx.doi.org/10.1016/S0925-8388(01)01159-8
  • Ribeiro HB, Guedes KJ, Pinheiro MVB, Greulich-Weber S, Krambrock K. About the blue and green colours in natural fluorapatite. Phys Status Solidi, C Conf Crit Rev 2005; 2:720 - 3; http://dx.doi.org/10.1002/pssc.200460274
  • Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl 2002; 41:3130 - 46; http://dx.doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1; PMID: 12207375
  • McConnell D. Apatite: its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences. Applied Mineralogy. Springer-Verlag: Vienna and New York USA 1973; 5:111.
  • Becker P. Phosphates and phosphoric acid: raw materials technology and economics of the wet process. Fertilizer science and technology series. Marcel Dekker: New York USA 1989; 2:760.
  • Smith DK. Calcium phosphate apatites in nature. In: Hydroxyapatite and related materials. Brown PW, Constantz B, Eds. CRC Press Inc.: Boca Raton FL USA 1994; 29-44.
  • Angelov AI, Levin BV, Chernenko YD. Phosphate ore. A reference book. (in Russian). Nedra Busyness Centre: Moscow 2000; 120.
  • Cook PJ, Shergold JH, Davidson DF, eds. Phosphate deposits of the world: phosphate rock resources. Cambridge University Press: Cambridge MA USA 2005; 2:600.
  • Zhang JZ, Guo L, Fischer CJ. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie river delta, the Chukchi sea and the Bering sea: importance of detrital apatite. Aquat Geochem 2010; 16:353 - 71; http://dx.doi.org/10.1007/s10498-009-9081-4
  • Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 2008; 108:4694 - 715; http://dx.doi.org/10.1021/cr0782527; PMID: 18975924
  • Jarvis I. Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclogae Geol Helv 1994; 87:643 - 700
  • Glenn CR. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol Helv 1994; 87:747 - 88
  • McClellan GH. Mineralogy of carbonate fluorapatites (Francolites). J Geological Soc 1980; 137:675 - 81; http://dx.doi.org/10.1144/gsjgs.137.6.0675
  • Mcarthur JM. Francolite geochemistry-compositional controls during formation, diagenesis, metamorphism and weathering. Geochim Cosmochim Acta 1985; 49:23 - 35; http://dx.doi.org/10.1016/0016-7037(85)90188-7
  • Schuffert JD, Kastner M, Emanuele G, Jahnke RA. Carbonate-ion substitution in francolite: a new equation. Geochim Cosmochim Acta 1990; 54:2323 - 8; http://dx.doi.org/10.1016/0016-7037(90)90058-S
  • Pan Y, Fleet ME. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC USA 2002; 48:13-49.
  • Zanin YN. The classification of calcium phosphates of phosphorites. Lithol Miner Resour 2004; 39:281 - 2; http://dx.doi.org/10.1023/B:LIMI.0000027613.56744.c8
  • Rogers AF. Collophane, a much neglected mineral. Am J Sci 1922; 3:269 - 76; http://dx.doi.org/10.2475/ajs.s5-3.16.269
  • Kozlovsky YG, Yarygin VI, Shokarev MM. Colloid calcium phosphate (collophan) in the composition of urinary calculi. Urologiya i Nefrologiya 1977; 42:27 - 32
  • http://www.mindat.org/min-10072.html (accessed in September 2010).
  • Elorza J, Astibia H, Murelaga X, Pereda-Suberbiola X. Francolite as a diagenetic mineral in dinosaur and other upper cretaceous reptile bones (Lano, Iberian peninsula): microstructural, petrological and geochemical features. Cretac Res 1999; 20:169 - 87; http://dx.doi.org/10.1006/cres.1999.0144
  • Hubert B, Álvaro JJ, Chen JY. Microbially mediated phosphatization in the Neoproterozoic Doushantuo Lagerstätte, South China. Bull Soc Geol Fr 2005; 176:355 - 61; http://dx.doi.org/10.2113/176.4.355
  • Xiao S, Zhang Y, Knoll AH. Three-dimensional preservation of algae and animal embryos in a neoproterozoic phosphorite. Nature 1998; 391:553 - 8; http://dx.doi.org/10.1038/35318
  • Xiao S, Yuan X, Knoll AH. Eumetazoan fossils in terminal proterozoic phosphorites?. Proc Natl Acad Sci U S A 2000; 97:13684 - 9; http://dx.doi.org/10.1073/pnas.250491697; PMID: 11095754
  • Chakhmouradian AR, Medici L. Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites. Eur J Mineral 2006; 18:105 - 12; http://dx.doi.org/10.1127/0935-1221/2006/0018-0105
  • http://www.mindat.org/gallery.php?min=9293 (accessed in October 2010).
  • Klein C. Brushite from the island of Mona (between Haiti and Puerto Rico). Sitzber K Preuss Aka 1901; 720-5.
  • Merrill GP. On the calcium phosphate in meteoric stones. Am J Sci 1917; 43:322 - 4; http://dx.doi.org/10.2475/ajs.s4-43.256.322
  • Tyrrell GW. Apatite, nepheline and rare-earth mining in the Kola Peninsula. Nature 1938; 141:354 - 5; http://dx.doi.org/10.1038/141354a0
  • Kogarko LN. Problems of the genesis of giant apatite and rare metal deposits of the Kola Peninsula, Russia. Geology of Ore Deposits 1999; 41:351 - 66
  • Ford AK. A remarkable crystal of apatite from Mt. Apatite, Auburn, Maine. Am J Sci 1917; 44:245 - 6; http://dx.doi.org/10.2475/ajs.s4-44.261.245
  • Hogarth DD. The discovery of apatite on the Lievre River, Quebec. Mineral Rec 1974; 5:178 - 82
  • van Velthuizen J. Giant fluorapatite crystals: a question of locality. Mineral Rec 1992; 23:459 - 63
  • Trueman NA. Substitutions for phosphate ions in apatite. Nature 1966; 210:937 - 8; http://dx.doi.org/10.1038/210937a0
  • Gilinskaya LG. Organic radicals in natural apatites according to EPR data: potential genetic and paleoclimatic indicators. J Struct Chem 2010; 51:471 - 81; http://dx.doi.org/10.1007/s10947-010-0069-0
  • Gilinskaya LG. A stable perinaphthenyl radical in natural apatites. J Struct Chem 2010; 51:761 - 4; http://dx.doi.org/10.1007/s10947-010-0112-1
  • Sánchez-Salcedo S, Vila M, Izquierdo-Barba I, Cicuéndez M, Vallet-Regí M. Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication. J Mater Chem 2010; 20:6956 - 61; http://dx.doi.org/10.1039/c0jm01260b
  • White T, Ferraris C, Kim J, Madhavi S. Apatite—an adaptive framework structure. In: Micro- and mesoporous mineral phases. Series: Reviews in Mineralogy and Geochemistry. Ferraris G, Merlino S, Eds. Mineralogical Society of America: Washington DC USA 2005; 57:307-401.
  • Jacob KD, Reynolds DS. Reduction of tricalcium phosphate by carbon. Ind Eng Chem 1928; 20:1204 - 10; http://dx.doi.org/10.1021/ie50227a027
  • Emsley J. The shocking history of phosphorus: a biography of the devil’s element. Pan Books, Macmillan UK 2001; 336.
  • van der Sluis S, Meszaros Y, Marchee WGJ, Wesselingh HA, van Rosmalen GM. The digestion of phosphate ore in phosphoric acid. Ind Eng Chem Res 1987; 26:2501 - 5; http://dx.doi.org/10.1021/ie00072a020
  • Dorozhkin SV. Fundamentals of the wet-process phosphoric acid production. 1. Kinetics and mechanism of the phosphate rock dissolution. Ind Eng Chem Res 1996; 35:4328 - 35; http://dx.doi.org/10.1021/ie960092u
  • Dorozhkin SV. Fundamentals of the wet-process phosphoric acid production. 2. kinetics and mechanism of CaSO4·0.5H2O surface crystallization and coating formation. Ind Eng Chem Res 1997; 36:467 - 73; http://dx.doi.org/10.1021/ie960219f
  • Dorozhkin SV. Ecological principles of wet-process phosphoric acid technology. J Chem Technol Biotechnol 1998; 71:227 - 33; http://dx.doi.org/10.1002/(SICI)1097-4660(199803)71:3<227::AID-JCTB801>3.0.CO;2-E
  • Copson RL, Newton RH, Lindsay JD. Superphosphate manufacture—mixing phosphate rook with concentrated phosphoric acid. Ind Eng Chem 1936; 28:923 - 7; http://dx.doi.org/10.1021/ie50320a012
  • Newton RH, Copson RL. Superphosphate manufacture—composition of superphosphate made from phosphate rock and concentrated phosphoric acid. Ind Eng Chem 1936; 28:1182 - 6; http://dx.doi.org/10.1021/ie50322a014
  • Rossete ALRM, Carneiro JMT, Bendassolli JA, Tavares CRO, Sant’Ana Filho CR. Production of single superphosphate labeled with 34S. Scientia Agricola 2008; 65:91 - 4; http://dx.doi.org/10.1590/S0103-90162008000100013
  • Magda A, Pode V, Niculescu M, Muntean C, Bandur G, Iovi A. Studies on process of obtaining the fertilizers based on ammonium phosphates with addition of boric acid. Rev Chim Bucharest 2008; 59:1340 - 4
  • Abouzeid AZM. Upgrading of phosphate ores—a review. Powder Handling and Processing 2007; 19:92 - 109
  • Abouzeid AZM. Physical and thermal treatment of phosphate ores—an overview. Int J Miner Process 2008; 85:59 - 84; http://dx.doi.org/10.1016/j.minpro.2007.09.001
  • Rey C, Combes C, Drouet C, Sfihi H. Chemical diversity of apatites. Adv Sci Technol 2006; 49:27 - 36; http://dx.doi.org/10.4028/www.scientific.net/AST.49.27
  • O’Neill WC. The fallacy of the calcium-phosphorus product. Kidney Int 2007; 72:792 - 6; http://dx.doi.org/10.1038/sj.ki.5002412; PMID: 17609689
  • LeGeros RZ. Formation and transformation of calcium phosphates: relevance to vascular calcification. Z Kardiol 2001; 90:Suppl 3 116 - 24; http://dx.doi.org/10.1007/s003920170032; PMID: 11374023
  • Becker A, Epple M, Müller KM, Schmitz I. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical, and ultrastructural methods. J Inorg Biochem 2004; 98:2032 - 8; http://dx.doi.org/10.1016/j.jinorgbio.2004.09.006; PMID: 15541492
  • Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng C 2005; 25:131 - 43; http://dx.doi.org/10.1016/j.msec.2005.01.008
  • Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization: why apatite?. Elements 2008; 4:97 - 104; http://dx.doi.org/10.2113/GSELEMENTS.4.2.97
  • Sun Y, Hanley EN Jr.. Calcium-containing crystals and osteoarthritis. Curr Opin Orthop 2007; 18:472 - 8; http://dx.doi.org/10.1097/BCO.0b013e32825e1d95
  • Daculsi G, LeGeros RZ, Mitre D. Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int 1989; 45:95 - 103; http://dx.doi.org/10.1007/BF02561408; PMID: 2505900
  • Lee-Thorp JA, van der Merwe NJ. Aspects of the chemistry of modern and fossil biological apatites. J Archaeol Sci 1991; 18:343 - 54; http://dx.doi.org/10.1016/0305-4403(91)90070-6
  • Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS. The role of magnesium on the structure of biological apatites. Calcif Tissue Int 1992; 50:439 - 44; http://dx.doi.org/10.1007/BF00296775; PMID: 1596779
  • Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, et al. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 2002; 31:479 - 87; http://dx.doi.org/10.1016/S8756-3282(02)00850-5; PMID: 12398943
  • Grynpas MD, Omelon S. Transient precursor strategy or very small biological apatite crystals?. Bone 2007; 41:162 - 4; http://dx.doi.org/10.1016/j.bone.2007.04.176; PMID: 17537689
  • Lee JW, Sasaki K, Ferrara JD, Akiyama K, Sasaki T, Nakano T. Evaluation of preferential alignment of biological apatite (BAp) crystallites in bone using transmission X-ray diffraction optics. J Jpn Ins Metal 2009; 73:786 - 93; http://dx.doi.org/10.2320/jinstmet.73.786
  • Ishimoto T, Sakamoto T, Nakano T. Orientation of biological apatite in rat calvaria analyzed by microbeam X-ray diffractometer. Mater Sci Forum 2010; 638:576 - 81; http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.576
  • Danil’chenko SN, Kulik AN, Bugai AN, Pavlenko PA, Kalinichenko TG, Ul’yanchich NV, et al. Thermally activated diffusion of magnesium from bioapatite crystals. J Appl Spectrosc 2005; 72:899 - 905
  • Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sphonheimer M, Dearing MD, et al. Carbon isotopic fractionation between diet, breath and bioapatite in different mammals. J Arch Sci 2005; 32:1459 - 70; http://dx.doi.org/10.1016/j.jas.2005.03.015
  • Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH. Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 2003; 84:2021 - 9; http://dx.doi.org/10.1016/S0006-3495(03)75010-3; PMID: 12609904
  • Eagle RA, Schauble EA, Tripati AK, Tütken T, Hulbert RC, Eiler JM. Body temperatures of modern and extinct vertebrates from (13)C-(18)O bond abundances in bioapatite. Proc Natl Acad Sci U S A 2010; 107:10377 - 82; http://dx.doi.org/10.1073/pnas.0911115107; PMID: 20498092
  • Skinner HCW. Biominerals. Mineral Mag 2005; 69:621 - 41; http://dx.doi.org/10.1180/0026461056950275
  • Daculsi G. Physicochemical and ultrastructural analysis of bone bioactive interface. Biomater Tissue Int 1992; 10:296 - 304
  • Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press 1989; 324.
  • Weiner S, Wagner HD. Material bone: structure-mechanical function relations. Annu Rev Mater Sci 1998; 28:271 - 98; http://dx.doi.org/10.1146/annurev.matsci.28.1.271
  • Limeback H. Molecular mechanisms in dental hard tissue mineralization. Curr Opin Dent 1991; 1:826 - 35; PMID: 1666963
  • Driessens FCM, Verbeeck RMH. Biominerals. CRC Press: Boca Raton FL USA 1990; 440.
  • Clark NA. The system P2O5-CaO-H2O and the recrystallization of monocalcium phosphate. J Phys Chem 1931; 35:1232 - 8; http://dx.doi.org/10.1021/j150323a005
  • Brown PW. Phase relationships in the ternary system CaO-P2O5-H2O at 25°C. J Am Ceram Soc 1992; 75:17 - 22; http://dx.doi.org/10.1111/j.1151-2916.1992.tb05435.x
  • Martin RI, Brown PW. Phase equilibria among acid calcium phosphates. J Am Ceram Soc 1997; 80:1263 - 6; http://dx.doi.org/10.1111/j.1151-2916.1997.tb02973.x
  • Kreidler ER, Hummel FA. Phase relationships in the system SrO-P2O5 and the influence of water vapor on the formation of Sr4P2O9. Inorg Chem 1967; 6:884 - 91; http://dx.doi.org/10.1021/ic50051a007
  • Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 2003; 172:339 - 50; http://dx.doi.org/10.1016/S0022-4596(02)00085-3
  • White TJ, ZhiLi D. Structural derivation and crystal chemistry of apatites. Acta Crystallogr B 2003; 59:1 - 16; http://dx.doi.org/10.1107/S0108768102019894; PMID: 12554967
  • Mathew M, Takagi S. Structures of biological minerals in dental research. J Res Natl Inst Stand Technol 2001; 106:1035 - 44
  • Hughes JM, Rakovan J. The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC, USA 2002; 48:1-12.
  • Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev 2008; 108:4628 - 69; http://dx.doi.org/10.1021/cr0782574; PMID: 18816145
  • Lynn AK, Bonfield W. A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield. Acc Chem Res 2005; 38:202 - 7; http://dx.doi.org/10.1021/ar040234d; PMID: 15766239
  • León B, Jansen JJ, eds. Thin calcium phosphate coatings for medical implants. Springer: New York USA 2009; 326.
  • Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J 2009; 28:1 - 10; http://dx.doi.org/10.4012/dmj.28.1; PMID: 19280963
  • Ishikawa K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 2010; 3:1138 - 55; http://dx.doi.org/10.3390/ma3021138
  • Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med 1999; 10:169 - 76; http://dx.doi.org/10.1023/A:1008937507714; PMID: 15348165
  • McDowell H, Gregory TM, Brown WE. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37°C. J Res Natl Bur Stand Sect A Phys Chem 1977; 81:273-81.
  • Pan HB, Darvell BW. Calcium phosphate solubility: the need for re-evaluation. Cryst Growth Des 2009; 9:639 - 45; http://dx.doi.org/10.1021/cg801118v
  • Boonchom B. Parallelogram-like microparticles of calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2·H2O) obtained by a rapid precipitation route in aqueous and acetone media. J Alloy Comp 2009; 482:199 - 202; http://dx.doi.org/10.1016/j.jallcom.2009.03.157
  • Köster K, Heide H, König R. Resorbierbare Calciumphosphatkeramik im Tierexperiment unter Belastung. Langenbecks Arch Chir 1977; 343:173 - 81; http://dx.doi.org/10.1007/BF01267989; PMID: 846277
  • Bermúdez O, Boltong MG, Driessens FCM, Planell JA. Optimization of a calcium orthophosphate cement formulation occurring in the combination of monocalcium phosphate monohydrate with calcium oxide. J Mater Sci Mater Med 1994; 5:67 - 71; http://dx.doi.org/10.1007/BF00121693
  • Bermúdez O, Boltong MG, Driessens FCM, Planell JA. Development of some calcium phosphate cements from combinations of α-TCP, MCPM and CaO. J Mater Sci Mater Med 1994; 5:160 - 3; http://dx.doi.org/10.1007/BF00053337
  • Driessens FCM, Boltong MG, Bermúdez O, Planell JA, Ginebra MP, Fernández E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med 1994; 5:164 - 70; http://dx.doi.org/10.1007/BF00053338
  • Huan Z, Chang J. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Acta Biomater 2009; 5:1253 - 64; http://dx.doi.org/10.1016/j.actbio.2008.10.006; PMID: 18996779
  • Budavari S, O’Neil MJ, Smith A, Heckelman PE, Kinneary JF, eds. The Merck Index: an encyclopedia of chemicals, drugs and biologicals. Chapman & Hall: USA 1996; 12:1741.
  • Stein HH, Kadzere CT, Kim SW, Miller PS. Influence of dietary phosphorus concentration on the digestibility of phosphorus in monocalcium phosphate by growing pigs. J Anim Sci 2008; 86:1861 - 7; http://dx.doi.org/10.2527/jas.2008-0867; PMID: 18441069
  • To honor Prof. George Jarvis Brush (1831–1912), an American mineralogist, Yale University, New Haven, Connecticut USA.
  • Ferreira A, Oliveira C, Rocha F. The different phases in the precipitation of dicalcium phosphate dihydrate. J Cryst Growth 2003; 252:599 - 611; http://dx.doi.org/10.1016/S0022-0248(03)00899-6
  • Oliveira C, Ferreira A, Rocha F. Dicalcium phosphate dihydrate precipitation: characterization and crystal growth. Chem Eng Res Des 2007; 85:1655 - 61
  • Sivkumar GR, Girija EK, Kalkura SN, Subramanian C. Crystallization and characterization of calcium phosphates: brushite and monetite. Cryst Res Technol 1997; 33:197 - 205; http://dx.doi.org/10.1002/(SICI)1521-4079(1998)33:2<197::AID-CRAT197>3.0.CO;2-K
  • Madhurambal G, Subha R, Mojumdar SC. Crystallization and thermal characterization of calcium hydrogen phosphate dihydrate crystals. J Therm Anal Calorim 2009; 96:73 - 6; http://dx.doi.org/10.1007/s10973-008-9841-1
  • MacDowell H, Brown WE, Sutter JR. Solubility study of calcium hydrogenphosphate. Ion pair formation. Inorg Chem 1971; 10:1638 - 43; http://dx.doi.org/10.1021/ic50102a020
  • Landin M, Rowe RC, York P. Structural changes during the dehydration of dicalcium phosphate dihydrate. Eur J Pharm Sci 1994; 2:245 - 52; http://dx.doi.org/10.1016/0928-0987(94)90029-9
  • Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J Chem Soc A Inorg Phys Theoret Chem 1971; 3725-9.
  • Arsic J, Kaminski D, Poodt P, Vlieg E. Liquid ordering at the brushite-{010}-water interface. Phys Rev B 2004; 69:245406 - 10; http://dx.doi.org/10.1103/PhysRevB.69.245406
  • Pan HB, Darvell BW. Solubility of dicalcium phosphate dihydrate by solid titration. Caries Res 2009; 43:254 - 60; http://dx.doi.org/10.1159/000217857; PMID: 19439946
  • Lundager-Madsen HE. Optical properties of synthetic crystals of brushite (CaHPO4·2H2O). J Cryst Growth 2008; 310:617 - 23; http://dx.doi.org/10.1016/j.jcrysgro.2007.11.110
  • Qiu SR, Orme CA. Dynamics of biomineral formation at the near-molecular level. Chem Rev 2008; 108:4784 - 822; http://dx.doi.org/10.1021/cr800322u; PMID: 19006401
  • Kurashina K, Kurita H, Hirano M, Kotani A, Klein CP, de Groot K. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 1997; 18:539 - 43; http://dx.doi.org/10.1016/S0142-9612(96)00162-7; PMID: 9105593
  • Driessens FCM, Planell JA, Boltong MG, Khairoun I, Ginebra MP. Osteotransductive bone cements. Proc Inst Mech Eng H 1998; 212:427 - 35; http://dx.doi.org/10.1243/0954411981534196; PMID: 9852738
  • Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998; 19:1593 - 9; http://dx.doi.org/10.1016/S0142-9612(97)00119-1; PMID: 9830985
  • Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, et al. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998; 19:1587 - 91; http://dx.doi.org/10.1016/S0142-9612(97)00121-X; PMID: 9830984
  • Crall JJ, Bjerga JM. Effects of DCPD/APF application and prolonged exposure to fluoride on caries-like lesion formation in vitro. J Oral Pathol 1987; 16:488 - 91; http://dx.doi.org/10.1111/j.1600-0714.1987.tb00678.x; PMID: 3127561
  • Wefel JS, Harless JD. The use of saturated DCPD in remineralization of artificial caries lesions in vitro. J Dent Res 1987; 66:1640 - 3; http://dx.doi.org/10.1177/00220345870660110701; PMID: 10872398
  • Hoppenbrouwers PM, Groenendijk E, Tewarie NR, Driessens FCM. Improvement of the caries resistance of human dental roots by a two-step conversion of the root mineral into fluoridated hydroxylapatite. J Dent Res 1988; 67:1254 - 6; http://dx.doi.org/10.1177/00220345880670100101; PMID: 3170878
  • Gaffar A, Blake-Haskins J, Mellberg J. In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int Dent J 1993; 43:Suppl 1 81 - 8; PMID: 8478133
  • Sullivan RJ, Charig A, Blake-Haskins J, Zhang YP, Miller SM, Strannick M, et al. In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv Dent Res 1997; 11:380 - 7; http://dx.doi.org/10.1177/08959374970110040201; PMID: 9470494
  • Mostashari SM, Haddadi H, Hashempoor Z. Effect of deposited calcium hydrogen phosphate dihydrate on the flame retardancy imparted to cotton fabric. Asian J Chem 2006; 18:2388 - 90
  • Powditch HI, Bosworth AW. Studies on infant feeding. IX. The availability of dicalcium phosphate when present as a constituent of infant’s food. Boston Med Surg J 1917; 177:864 - 7; http://dx.doi.org/10.1056/NEJM191712201772502
  • For Moneta (now Monito) Island (archipelago of Puerto Rico), which contains a notable occurrence.
  • Tas AC. Monetite (CaHPO4) synthesis in ethanol at room temperature. J Am Ceram Soc 2009; 92:2907 - 12; http://dx.doi.org/10.1111/j.1551-2916.2009.03351.x
  • Chen GG, Luo GS, Yang LM, Xu JH, Sun Y, Wang JD. Synthesis and size control of CaHPO4 particles in a two-liquid phase micro-mixing process. J Cryst Growth 2005; 279:501 - 7; http://dx.doi.org/10.1016/j.jcrysgro.2005.02.069
  • Miyazaki T, Sivaprakasam K, Tantry J, Suryanarayanan R. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. J Pharm Sci 2009; 98:905 - 16; http://dx.doi.org/10.1002/jps.21443; PMID: 18563795
  • Eshtiagh-Hosseini H, Houssaindokht MR, Chahkandhi M, Youssefi A. Preparation of anhydrous dicalcium phosphate, DCPA, through sol-gel process, identification and phase transformation evaluation. J Non-Cryst Solids 2008; 354:3854 - 7; http://dx.doi.org/10.1016/j.jnoncrysol.2008.04.016
  • Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res 1990; 69:1852 - 6; http://dx.doi.org/10.1177/00220345900690121201; PMID: 2250090
  • TenHuisen KS, Brown PW. The formation of hydroxyapatite-ionomer cements at 38 ° C. J Dent Res 1994; 73:598 - 606; PMID: 8163730
  • Fernández E, Ginebra MP, Boltong MG, Driessens FCM, Ginebra J, De Maeyer EA, et al. Kinetic study of the setting reaction of a calcium phosphate bone cement. J Biomed Mater Res 1996; 32:367 - 74; http://dx.doi.org/10.1002/(SICI)1097-4636(199611)32:3<367::AID-JBM9>3.0.CO;2-Q; PMID: 8897141
  • Fernández E, Gil FJ, Best SM, Ginebra MP, Driessens FCM, Planell JA. The cement setting reaction in the CaHPO4-alpha-Ca3(PO4)2 system: an X-ray diffraction study. J Biomed Mater Res 1998; 42:403 - 6; http://dx.doi.org/10.1002/(SICI)1097-4636(19981205)42:3<403::AID-JBM8>3.0.CO;2-N; PMID: 9788502
  • Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Production and characterization of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: pH, workability and setting times. J Mater Sci Mater Med 1999; 10:223 - 30; http://dx.doi.org/10.1023/A:1008958112257; PMID: 15348155
  • Desai TR, Bhaduri SB, Tas AC. A self-setting, monetite (CaHPO4) cement for skeletal repair. Ceram Eng Sci Proc 2006; 27:61 - 9
  • Sturgeon JL, Brown PW. Effects of carbonate on hydroxyapatite formed from CaHPO(4) and Ca(4)(PO(4))(2)O. J Mater Sci Mater Med 2009; 20:1787 - 94; http://dx.doi.org/10.1007/s10856-009-3752-y; PMID: 19536641
  • Chen G, Li W, Yu X, Sun K. Study of the cohesion of TTCP/DCPA phosphate cement through evolution of cohesion time and remaining percentage. J Mater Sci 2009; 44:828 - 34; http://dx.doi.org/10.1007/s10853-008-3126-8
  • Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010; 31:2762 - 9; http://dx.doi.org/10.1016/j.biomaterials.2009.12.039; PMID: 20045555
  • Takami K, Machimura H, Takado K, Inagaki M, Kawashima Y. Novel preparation of free flowing spherically granulated dibasic calcium phosphate anhydrous for direct tabletting. Chem Pharm Bull (Tokyo) 1996; 44:868 - 70; http://dx.doi.org/10.1248/cpb.44.868
  • LeGeros RZ. Preparation of octacalcium phosphate (OCP): a direct fast method. Calcif Tissue Int 1985; 37:194 - 7; http://dx.doi.org/10.1007/BF02554841; PMID: 3924374
  • Bigi A, Boanini E, Borghi M, Cojazzi G, Panzavolta S, Roveri N. Synthesis and hydrolysis of octacalcium phosphate: effect of sodium polyacrylate. J Inorg Biochem 1999; 75:145 - 51; http://dx.doi.org/10.1016/S0162-0134(99)00047-1
  • Nakahira A, Aoki S, Sakamoto K, Yamaguchi S. Synthesis and evaluation of various layered octacalcium phosphates by wet-chemical processing. J Mater Sci Mater Med 2001; 12:793 - 800; http://dx.doi.org/10.1023/A:1017968818168; PMID: 15348226
  • Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials 2006; 27:2874 - 81; http://dx.doi.org/10.1016/j.biomaterials.2005.12.031; PMID: 16439012
  • Arellano-Jiménez MJ, García-García R, Reyes-Gasga J. Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. J Phys Chem Solids 2009; 70:390 - 5; http://dx.doi.org/10.1016/j.jpcs.2008.11.001
  • Suzuki O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 2010; 6:3379 - 87; http://dx.doi.org/10.1016/j.actbio.2010.04.002; PMID: 20371385
  • Miyatake N, Kishimoto KN, Anada T, Imaizumi H, Itoi E, Suzuki O. Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials 2009; 30:1005 - 14; http://dx.doi.org/10.1016/j.biomaterials.2008.10.058; PMID: 19027945
  • Boanini E, Gazzano M, Rubini K, Bigi A. Collapsed octacalcium phosphate stabilized by ionic substitutions. Cryst Growth Des 2010; 10:3612 - 7; http://dx.doi.org/10.1021/cg100494f
  • Brown WE, Mathew M, Tung MS. Crystal chemistry of octacalcium phosphate. Prog. Cryst. Growth Charact 1981; 4:59 - 87; http://dx.doi.org/10.1016/0146-3535(81)90048-4
  • Mathew M, Brown WE, Schroeder L, Dickens B. Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate, Ca8(HPO4)2(PO4)4·5H2O. J Crystallogr Spectrosc Res 1988; 18:235 - 50; http://dx.doi.org/10.1007/BF01194315
  • Brown WE. Octacalcium phosphate and hydroxyapatite: crystal structure of octacalcium phosphate. Nature 1962; 196:1048 - 50; http://dx.doi.org/10.1038/1961048b0
  • Brown WE, Smith JP, Lehr JR, Frazier AW. Octacalcium phosphate and hydroxyapatite: crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 1962; 196:1050 - 5; http://dx.doi.org/10.1038/1961050a0
  • Pan HB, Darvell BW. Solid titration of octacalcium phosphate. Caries Res 2009; 43:322 - 30; http://dx.doi.org/10.1159/000226231; PMID: 19556792
  • Le Geros RZ. Variations in the crystalline components of human dental calculus. I. Crystallographic and spectroscopic methods of analysis. J Dent Res 1974; 53:45 - 50; http://dx.doi.org/10.1177/00220345740530012801; PMID: 4520446
  • Schroeder HE. Formation and inhibition of dental calculus. J Periodontol 1969; 40:643 - 6; PMID: 5260623
  • Chow LC, Eanes ED, eds. Octacalcium phosphate. Monographs in Oral Science. Karger: Basel, Switzerland 2001; 18:167.
  • Kakei M, Sakae T, Yoshikawa M. Electron microscopy of octacalcium phosphate in the dental calculus. J Electron Microsc (Tokyo) 2009; 58:393 - 8; http://dx.doi.org/10.1093/jmicro/dfp034; PMID: 19561133
  • Brown WE. Crystal growth of bone mineral. Clin Orthop Relat Res 1966; 44:205 - 20; PMID: 5910250
  • Nelson DGA, Wood GJ, Barry JC, Featherstone JDB. The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study. Ultramicroscopy 1986; 19:253 - 65; http://dx.doi.org/10.1016/0304-3991(86)90213-5; PMID: 3765183
  • Iijima M, Nelson DGA, Pan Y, Kreinbrink AT, Adachi M, Goto T, et al. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F- ions on apatite/OCP/apatite structure formation. Calcif Tissue Int 1996; 59:377 - 84; http://dx.doi.org/10.1007/s002239900143; PMID: 8849405
  • Bodier-Houllé P, Steuer P, Voegel JC, Cuisinier FJG. First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. Acta Crystallogr D Biol Crystallogr 1998; 54:1377 - 81; http://dx.doi.org/10.1107/S0907444998005769; PMID: 10089513
  • Aoba T, Komatsu H, Shimazu Y, Yagishita H, Taya Y. Enamel mineralization and an initial crystalline phase. Connect Tissue Res 1998; 38:129 - 37, discussion 139-45; http://dx.doi.org/10.3109/03008209809017029; PMID: 11063022
  • Rodríguez-Hernández AG, Fernández ME, Carbajal-de-la-Torre G, García-García R, Reyes-Gasga J. Electron microscopy analysis of the central dark line defect of the human tooth enamel. Mater Res Soc Symp Proc 2005; 839:157-62.
  • Tomazic BB, Brown WE, Schoen FJ. Physicochemical properties of calcific deposits isolated from porcine bioprosthetic heart valves removed from patients following 2-13 years function. J Biomed Mater Res 1994; 28:35 - 47; http://dx.doi.org/10.1002/jbm.820280106; PMID: 8126027
  • Nancollas GH, Wu W. Biomineralization mechanisms: a kinetics and interfacial energy approach. J Cryst Growth 2000; 211:137 - 42; http://dx.doi.org/10.1016/S0022-0248(99)00816-7
  • Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate (OCP) in rat skull defects enhances bone repair. J Dent Res 1999; 78:1682 - 7; http://dx.doi.org/10.1177/00220345990780110401; PMID: 10576163
  • Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis 2001; 7:259 - 65; http://dx.doi.org/10.1034/j.1601-0825.2001.70410.x; PMID: 11575878
  • Sargolzaei-Aval F, Sobhani A, Arab MR, Sarani SA, Heydari MH. The efficacy of implant of octacalcium phosphate in combination with bone matrix gelatin (BMG) on bone regeneration in skull defects in rat. Iran J Med Sci 2004; 29:124 - 9
  • Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, et al. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006; 27:2671 - 81; http://dx.doi.org/10.1016/j.biomaterials.2005.12.004; PMID: 16413054
  • Suzuki O, Imaizumi H, Kamakura S, Katagiri T. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem 2008; 15:305 - 13; http://dx.doi.org/10.2174/092986708783497283; PMID: 18288986
  • Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater 2009; 5:1756 - 66; http://dx.doi.org/10.1016/j.actbio.2008.12.008; PMID: 19136321
  • Murakami Y, Honda Y, Anada T, Shimauchi H, Suzuki O. Comparative study on bone regeneration by synthetic octacalcium phosphate with various granule sizes. Acta Biomater 2010; 6:1542 - 8; http://dx.doi.org/10.1016/j.actbio.2009.10.023; PMID: 19837192
  • Tao J, Jiang W, Zhai H, Pan H, Xu X, Tang R. Structural components and anisotropic dissolution behaviors in one hexagonal single crystal of β-tricalcium phosphate. Cryst Growth Des 2008; 8:2227 - 34; http://dx.doi.org/10.1021/cg700808h
  • Tao J, Pan H, Zhai H, Wang J, Li L, Wu J, et al. Controls of tricalcium phosphate single-crystal formation from its amorphous precursor by interfacial energy. Cryst Growth Des 2009; 9:3154 - 60; http://dx.doi.org/10.1021/cg801130w
  • Hou XJ, Mao KY, Chen DF. Bone formation performance of beta-tricalcium phosphate sintered bone. J Clin Rehabil Tiss Eng Res 2008; 12:9627 - 30
  • Dickens B, Schroeder LW, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. I. The crystal structure of pure β-Ca3(PO4)2. J Solid State Chem 1974; 10:232 - 48; http://dx.doi.org/10.1016/0022-4596(74)90030-9
  • Schroeder LW, Dickens B, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. J Solid State Chem 1977; 22:253 - 62; http://dx.doi.org/10.1016/0022-4596(77)90002-0
  • Ito A, LeGeros RZ. Magnesium- and zinc-substituted beta-tricalcium phosphates as potential bone substitute biomaterials. Key Eng Mater 2008; 377:85 - 98; http://dx.doi.org/10.4028/www.scientific.net/KEM.377.85
  • Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J Am Ceram Soc 2009; 92:1592 - 5; http://dx.doi.org/10.1111/j.1551-2916.2009.03093.x
  • Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Acta Biomater 2010; 6:571 - 6; http://dx.doi.org/10.1016/j.actbio.2009.08.009; PMID: 19679202
  • Araújo JC, Sader MS, Moreira EL, Moraes VCA, LeGeros RZ, Soares GA. Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement. Mater Chem Phys 2009; 118:337 - 40; http://dx.doi.org/10.1016/j.matchemphys.2009.07.064
  • Karlinsey RL, Mackey AC. Solid-state preparation and dental application of an organically modified calcium phosphate. J Mater Sci 2009; 44:346 - 9; http://dx.doi.org/10.1007/s10853-008-3068-1
  • Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified beta-TCP material for dental hard-tissue remineralization. Acta Biomater 2010; 6:969 - 78; http://dx.doi.org/10.1016/j.actbio.2009.08.034; PMID: 19716443
  • Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Surfactant-modified beta-TCP: structure, properties, and in vitro remineralization of subsurface enamel lesions. J Mater Sci Mater Med 2010; 21:2009 - 20; http://dx.doi.org/10.1007/s10856-010-4064-y; PMID: 20364363
  • Yashima M, Sakai A, Kamiyama T, Hoshikawa A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J Solid State Chem 2003; 175:272 - 7; http://dx.doi.org/10.1016/S0022-4596(03)00279-2
  • Yin X, Stott MJ, Rubio A. α- and β-tricalcium phosphate: a density functional study. Phys Rev B 2003; 68:205205 - 12; http://dx.doi.org/10.1103/PhysRevB.68.205205
  • Liang L, Rulis P, Ching WY. Mechanical properties, electronic structure and bonding of alpha- and beta-tricalcium phosphates with surface characterization. Acta Biomater 2010; 6:3763 - 71; http://dx.doi.org/10.1016/j.actbio.2010.03.033; PMID: 20359555
  • Kumar AR, Kalainathan S. Microhardness studies on calcium hydrogen phosphate (brushite) crystals. Mater Res Bull 2010; 45:1664 - 7; http://dx.doi.org/10.1016/j.materresbull.2010.07.002
  • Pan HB, Darvell BW. Solubility of TTCP and beta-TCP by solid titration. Arch Oral Biol 2009; 54:671 - 7; http://dx.doi.org/10.1016/j.archoralbio.2008.01.001; PMID: 19414172
  • Wang W, Itoh S, Yamamoto N, Okawa A, Nagai A, Yamashita K. Electrical polarization of β-tricalcium phosphate ceramics. J Am Ceram Soc 2010; 93:2175 - 7; http://dx.doi.org/10.1111/j.1551-2916.2010.03710.x
  • Kodaka T, Debari K, Higashi S. Magnesium-containing crystals in human dental calculus. J Electron Microsc (Tokyo) 1988; 37:73 - 80; PMID: 3411274
  • Reid JD, Andersen ME. Medial calcification (whitlockite) in the aorta. Atherosclerosis 1993; 101:213 - 24; http://dx.doi.org/10.1016/0021-9150(93)90118-E; PMID: 8379966
  • Scotchford CA, Ali SY. Magnesium whitlockite deposition in articular cartilage: a study of 80 specimens from 70 patients. Ann Rheum Dis 1995; 54:339 - 44; http://dx.doi.org/10.1136/ard.54.5.339; PMID: 7794037
  • P’ng CH, Boadle R, Horton M, Bilous M, Bonar F. Magnesium whitlockite of the aorta. Pathology 2008; 40:539 - 40; http://dx.doi.org/10.1080/00313020802198044; PMID: 18604748
  • Mirtchi AA, Lemaître J, Munting E. Calcium phosphate cements: study of the beta-tricalcium phosphate--dicalcium phosphate--calcite cements. Biomaterials 1990; 11:83 - 8; http://dx.doi.org/10.1016/0142-9612(90)90121-6; PMID: 2156575
  • Mirtchi AA, Lemaître J, Munting E. Calcium phosphate cements: effect of fluorides on the setting and hardening of beta-tricalcium phosphate-dicalcium phosphate-calcite cements. Biomaterials 1991; 12:505 - 10; http://dx.doi.org/10.1016/0142-9612(91)90150-9; PMID: 1892987
  • Lemaître J, Munting E, Mirtchi AA. Setting, hardening and resorption of calcium phosphate hydraulic cements. Rev Stomatol Chir Maxillofac 1992; 93:163 - 5; PMID: 1323872
  • Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent 1986; 6:22 - 33; PMID: 3015813
  • Nery EB, Lynch KL, Hirthe WM, Mueller KH. Bioceramic implants in surgically produced infrabony defects. J Periodontol 1975; 46:328 - 47; PMID: 1056997
  • Metsger DS, Driskell TD, Paulsrud JR. Tricalcium phosphate ceramic--a resorbable bone implant: review and current status. J Am Dent Assoc 1982; 105:1035 - 8; PMID: 6818267
  • Galois L, Mainard D, Delagoutte JP. Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 2002; 26:109 - 15; http://dx.doi.org/10.1007/s00264-001-0329-x; PMID: 12078872
  • Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater 2005; 72:94 - 101; http://dx.doi.org/10.1002/jbm.b.30136; PMID: 15376187
  • Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 2006; 35:708 - 13; http://dx.doi.org/10.1016/j.ijom.2006.03.017; PMID: 16690249
  • Ogose A, Kondo N, Umezu H, Hotta T, Kawashima H, Tokunaga K, et al. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones. Biomaterials 2006; 27:1542 - 9; http://dx.doi.org/10.1016/j.biomaterials.2005.08.034; PMID: 16165205
  • Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008; 23:197 - 212; http://dx.doi.org/10.1177/0885328208096798; PMID: 18996965
  • Liu Y, Pei GX, Shan J, Ren GH. New porous beta-tricalcium phosphate as a scaffold for bone tissue engineering. J Clin Rehabil Tiss Eng Res 2008; 12:4563 - 7
  • Epstein NE. Beta tricalcium phosphate: observation of use in 100 posterolateral lumbar instrumented fusions. Spine J 2009; 9:630 - 8; http://dx.doi.org/10.1016/j.spinee.2009.04.007; PMID: 19501025
  • Shayegan A, Petein M, Vanden Abbeele A. The use of beta-tricalcium phosphate, white MTA, white Portland cement and calcium hydroxide for direct pulp capping of primary pig teeth. Dent Traumatol 2009; 25:413 - 9; http://dx.doi.org/10.1111/j.1600-9657.2009.00799.x; PMID: 19519859
  • Güngörmüş C, Kılıç A, Akay MT, Kolankaya D. The effects of maternal exposure to food additive E341 (tricalcium phosphate) on foetal development of rats. Environ Toxicol Pharmacol 2010; 29:111 - 6; http://dx.doi.org/10.1016/j.etap.2009.11.006; PMID: 21787591
  • Weiner ML, Salminen WF, Larson PR, Barter RA, Kranetz JL, Simon GS. Toxicological review of inorganic phosphates. Food Chem Toxicol 2001; 39:759 - 86; http://dx.doi.org/10.1016/S0278-6915(01)00028-X; PMID: 11434984
  • Jokic B, Jankovic-Castvan I, Veljovic DJ, Bucevac D, Obradovic-Djuricic K, Petrovic R, et al. Synthesis and settings behavior of α-TCP from calcium deficient hyroxyapatite obtained by hydrothermal method. J Optoelectron Adv Mater 2007; 9:1904 - 10
  • Nurse RW, Welch JB, Gun W. High-temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. J Chem Soc 1959; 1077 - 83; http://dx.doi.org/10.1039/jr9590001077
  • Langstaff SD, Sayer M, Smith TJN, Pugh SM, Hesp SAM, Thompson WT. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials 1999; 20:1727 - 41; http://dx.doi.org/10.1016/S0142-9612(99)00086-1; PMID: 10503974
  • Langstaff SD, Sayer M, Smith TJN, Pugh SM. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response. Biomaterials 2001; 22:135 - 50; http://dx.doi.org/10.1016/S0142-9612(00)00139-3; PMID: 11101158
  • Sayer M, Stratilatov AD, Reid JW, Calderin L, Stott MJ, Yin X, et al. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials 2003; 24:369 - 82; http://dx.doi.org/10.1016/S0142-9612(02)00327-7; PMID: 12423592
  • Reid JW, Pietak AM, Sayer M, Dunfield D, Smith TJN. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 2005; 26:2887 - 97; http://dx.doi.org/10.1016/j.biomaterials.2004.09.005; PMID: 15603784
  • Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate. Biomaterials 2006; 27:2916 - 25; http://dx.doi.org/10.1016/j.biomaterials.2006.01.007; PMID: 16448694
  • Astala R, Calderin L, Yin X, Stott MJ. Ab initio simulation of Si-doped hydroxyapatite. Chem Mater 2006; 18:413 - 22; http://dx.doi.org/10.1021/cm051989x
  • TenHuisen KS, Brown PW. Formation of calcium-deficient hydroxyapatite from alpha-tricalcium phosphate. Biomaterials 1998; 19:2209 - 17; http://dx.doi.org/10.1016/S0142-9612(98)00131-8; PMID: 9884062
  • Durucan C, Brown PW. alpha-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J Mater Sci Mater Med 2000; 11:365 - 71; http://dx.doi.org/10.1023/A:1008934024440; PMID: 15348018
  • Durucan C, Brown PW. Kinetic model for α-tricalcium phosphate hydrolysis. J Am Ceram Soc 2002; 85:2013 - 8; http://dx.doi.org/10.1111/j.1151-2916.2002.tb00397.x
  • Camiré CL, Gbureck U, Hirsiger W, Bohner M. Correlating crystallinity and reactivity in an alpha-tricalcium phosphate. Biomaterials 2005; 26:2787 - 94; http://dx.doi.org/10.1016/j.biomaterials.2004.08.001; PMID: 15603774
  • Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995; 267:1796 - 9; http://dx.doi.org/10.1126/science.7892603; PMID: 7892603
  • Tagaya M, Goto H, Iinuma M, Wakamatsu N, Tamura Y, Doi Y. Development of self-setting Te-Cp/alpha-TCP cement for pulpotomy. Dent Mater J 2005; 24:555 - 61; http://dx.doi.org/10.4012/dmj.24.555; PMID: 16445018
  • Oda M, Takeuchi A, Lin X, Matsuya S, Ishikawa K. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement. Dent Mater J 2008; 27:672 - 7; http://dx.doi.org/10.4012/dmj.27.672; PMID: 18972783
  • Camiré CL, Nevsten P, Lidgren L, McCarthy I. The effect of crystallinity on strength development of alpha-TCP bone substitutes. J Biomed Mater Res B Appl Biomater 2006; 79:159 - 65; http://dx.doi.org/10.1002/jbm.b.30526; PMID: 16615072
  • Yin X, Stott MJ. Theoretical insights into bone grafting Si-stabilized α-tricalcium phosphate. J Chem Phys 2005; 122:24709 - 18; http://dx.doi.org/10.1063/1.1829995
  • Mathew M, Schroeder LW, Dickens B, Brown WE. The crystal structure of α-Ca3(PO4)2. Acta Crystallogr B 1977; 33:1325 - 33; http://dx.doi.org/10.1107/S0567740877006037
  • Yin X, Stott MJ. Surface and adsorption properties of alpha-tricalcium phosphate. J Chem Phys 2006; 124:124701 - 10; http://dx.doi.org/10.1063/1.2178800; PMID: 16599712
  • Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater 2010; 6:4457 - 75; http://dx.doi.org/10.1016/j.actbio.2010.06.031; PMID: 20609395
  • Termine JD, Eanes ED. Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 1972; 10:171 - 97; http://dx.doi.org/10.1007/BF02012548; PMID: 4674170
  • Eanes ED, Termine JD, Nylen MU. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif Tissue Res 1973; 12:143 - 58; http://dx.doi.org/10.1007/BF02013730; PMID: 4710793
  • Meyer JL, Eanes ED. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif Tissue Res 1978; 25:59 - 68; http://dx.doi.org/10.1007/BF02010752; PMID: 25699
  • Meyer JL, Eanes ED. A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif Tissue Res 1978; 25:209 - 16; http://dx.doi.org/10.1007/BF02010771; PMID: 30523
  • Wuthier RE, Rice GS, Wallace JE Jr., Weaver RL, LeGeros RZ, Eanes ED. In vitro precipitation of calcium phosphate under intracellular conditions: formation of brushite from an amorphous precursor in the absence of ATP. Calcif Tissue Int 1985; 37:401 - 10; http://dx.doi.org/10.1007/BF02553710; PMID: 3930038
  • Sinyaev VA, Shustikova ES, Levchenko LV, Sedunov AA. Synthesis and dehydration of amorphous calcium phosphate. Inorg Mater 2001; 37:619 - 22; http://dx.doi.org/10.1023/A:1017572502092
  • Termine JD, Peckauskas RA, Posner AS. Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch Biochem Biophys 1970; 140:318 - 25; http://dx.doi.org/10.1016/0003-9861(70)90072-X; PMID: 4319593
  • Elliott JC. Recent studies of apatites and other calcium orthophosphates. In: Les matériaux en phosphate de calcium. Aspects fondamentaux./Calcium phosphate materials. Fundamentals. Brès E, Hardouin P, Eds. Sauramps Medical: Montpellier, France 1998; 25-66.
  • Li Y, Weng W. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios. J Mater Sci Mater Med 2007; 18:2303 - 8; http://dx.doi.org/10.1007/s10856-007-3132-4; PMID: 17562135
  • Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials 2002; 23:2553 - 9; http://dx.doi.org/10.1016/S0142-9612(01)00390-8; PMID: 12033603
  • Boskey AL, Posner AS. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J Phys Chem 1973; 77:2313 - 7; http://dx.doi.org/10.1021/j100638a011
  • Keller L, Dollase WA. X-ray determination of crystalline hydroxyapatite to amorphous calcium-phosphate ratio in plasma sprayed coatings. J Biomed Mater Res 2000; 49:244 - 9; http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<244::AID-JBM13>3.0.CO;2-H; PMID: 10571912
  • Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 2003; 172:339 - 50; http://dx.doi.org/10.1016/S0022-4596(02)00085-3
  • Kumar R, Cheang P, Khor KA. Phase composition and heat of crystallization of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Mater 2004; 52:1171 - 81; http://dx.doi.org/10.1016/j.actamat.2003.11.016
  • Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 1975; 8:273 - 81; http://dx.doi.org/10.1021/ar50092a003
  • Harries JE, Hukins DWL, Hasnain SS. Analysis of the EXAFS spectrum of hydroxyapatite. J Phys C Solid State Phys 1986; 19:6859 - 72; http://dx.doi.org/10.1088/0022-3719/19/34/022
  • Harries JE, Hukins DWL, Holt C, Hasnain SS. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J Cryst Growth 1987; 84:563 - 70; http://dx.doi.org/10.1016/0022-0248(87)90046-7
  • Taylor MG, Simkiss K, Simmons J, Wu LNY, Wuthier RE. Structural studies of a phosphatidyl serine-amorphous calcium phosphate complex. Cell Mol Life Sci 1998; 54:196 - 202; http://dx.doi.org/10.1007/s000180050143; PMID: 9539964
  • Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 2000; 361:131 - 8; http://dx.doi.org/10.1016/S0040-6031(00)00554-2
  • Posner AS, Betts F, Blumenthal NC. Formation and structure of synthetic and bone hydroxyapatite. Progr Cryst Growth Char 1980; 3:49 - 64; http://dx.doi.org/10.1016/0146-3535(80)90011-8
  • Boskey AL. Amorphous calcium phosphate: the contention of bone. J Dent Res 1997; 76:1433 - 6; http://dx.doi.org/10.1177/00220345970760080501; PMID: 9240379
  • Onuma K, Ito A. Cluster growth model for hydroxyapatite. Chem Mater 1998; 10:3346 - 51; http://dx.doi.org/10.1021/cm980062c
  • Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res 1996; 75:1679 - 86; http://dx.doi.org/10.1177/00220345960750091001; PMID: 8952621
  • Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater 1996; 12:295 - 301; http://dx.doi.org/10.1016/S0109-5641(96)80037-6; PMID: 9170997
  • Skrtic D, Antonucci JM, Eanes ED. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 2003; 108:167 - 82
  • Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res 2000; 53:381 - 91; http://dx.doi.org/10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H; PMID: 10898879
  • Schiller C, Siedler M, Peters F, Epple M. Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement. Ceram Transact 2001; 114:97 - 108
  • Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001; 54:162 - 71; http://dx.doi.org/10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3; PMID: 11093175
  • Tadic D, Beckmann F, Schwarz K, Epple M. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004; 25:3335 - 40; http://dx.doi.org/10.1016/j.biomaterials.2003.10.007; PMID: 14980428
  • Tadic D, Epple M. Amorphous calcium phosphates as bone substitution materials. Eur J Trauma 2002; 28:136 - 7
  • Eanes ED. Amorphous calcium phosphate. In: Octacalcium phosphate. Monographs in Oral Science. Chow LC, Eanes ED, Eds. Karger: Basel, Switzerland 2001; 18:130-47.
  • Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 2010; 6:3362 - 78; http://dx.doi.org/10.1016/j.actbio.2010.02.017; PMID: 20167295
  • Sinha A, Nayar S, Agrawal A, Bhattacharyya D, Ramachandrarao P. Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J Am Ceram Soc 2003; 86:357 - 9; http://dx.doi.org/10.1111/j.1151-2916.2003.tb00024.x
  • Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem 2003; 1445 - 51; http://dx.doi.org/10.1002/ejic.200390188
  • Vallet-Regí M, Rodríguez-Lorenzo LM, Salinas AJ. Synthesis and characterisation of calcium deficient apatite. Solid State Ion 1997; 101-103:1279 - 85; http://dx.doi.org/10.1016/S0167-2738(97)00213-0
  • Siddharthan A, Seshadri SK, Sampath Kumar TS. Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J Mater Sci Mater Med 2004; 15:1279 - 84; http://dx.doi.org/10.1007/s10856-004-5735-3; PMID: 15747179
  • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006; 27:4661 - 70; http://dx.doi.org/10.1016/j.biomaterials.2006.04.032; PMID: 16713623
  • Brès EF, Duhoo T, Leroy N, Lemaitre J. Evidence of a transient phase during the hydrolysis of calcium-deficient hydroxyapatite. Zeitschrift fuer Metallkunde/Mater. Res Adv Tech 2005; 96:503 - 6
  • Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G, et al. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res B Appl Biomater 2008; 84:1 - 6; http://dx.doi.org/10.1002/jbm.b.30569; PMID: 17907206
  • Tancret F, Bouler JM, Chamousset J, Minois LM. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J Eur Ceram Soc 2006; 26:3647 - 56; http://dx.doi.org/10.1016/j.jeurceramsoc.2005.12.015
  • Bouler JM, Trécant M, Delécrin J, Royer J, Passuti N, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J Biomed Mater Res 1996; 32:603 - 9; http://dx.doi.org/10.1002/(SICI)1097-4636(199612)32:4<603::AID-JBM13>3.0.CO;2-E; PMID: 8953150
  • Wang J, Chen W, Li Y, Fan S, Weng J, Zhang X. Biological evaluation of biphasic calcium phosphate ceramic vertebral laminae. Biomaterials 1998; 19:1387 - 92; http://dx.doi.org/10.1016/S0142-9612(98)00014-3; PMID: 9758038
  • Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 1998; 19:1473 - 8; http://dx.doi.org/10.1016/S0142-9612(98)00061-1; PMID: 9794521
  • Daculsi G, Weiss P, Bouler JM, Gauthier O, Millot F, Aguado E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 1999; 25:Suppl 59S - 61S; http://dx.doi.org/10.1016/S8756-3282(99)00135-0; PMID: 10458277
  • LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003; 14:201 - 9; http://dx.doi.org/10.1023/A:1022872421333; PMID: 15348465
  • Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003; 14:195 - 200; http://dx.doi.org/10.1023/A:1022842404495; PMID: 15348464
  • Alam I, Asahina I, Ohmamiuda K, Enomoto S. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J Biomed Mater Res 2001; 54:129 - 38; http://dx.doi.org/10.1002/1097-4636(200101)54:1<129::AID-JBM16>3.0.CO;2-D; PMID: 11077412
  • Daculsi G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv Sci Technol 2006; 49:9 - 13; http://dx.doi.org/10.4028/www.scientific.net/AST.49.9
  • Daculsi G, Baroth S, LeGeros RZ. 20 years of biphasic calcium phosphate bioceramics development and applications. Ceram Eng Sci Proc 2010; 30:45 - 58
  • Lobo SE, Arinzeh TL. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 2010; 3:815 - 26; http://dx.doi.org/10.3390/ma3020815
  • Dorozhkina EI, Dorozhkin SV. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem Mater 2002; 14:4267 - 72; http://dx.doi.org/10.1021/cm0203060
  • Dorozhkin SV. Mechanism of solid-state conversion of non-stoichiometric hydroxyapatite to diphase calcium phosphate. Russ Chem Bull (Int. Ed.) 2003; 52:2369-75.
  • Rodríguez-Lorenzo LM. Studies on calcium deficient apatites structure by means of MAS-NMR spectroscopy. J Mater Sci Mater Med 2005; 16:393 - 8; http://dx.doi.org/10.1007/s10856-005-6977-4; PMID: 15875247
  • Wilson RM, Elliott JC, Dowker SEP. Formate incorporation in the structure of Ca-deficient apatite: Rietveld structure refinement. J Solid State Chem 2003; 174:132 - 40; http://dx.doi.org/10.1016/S0022-4596(03)00188-9
  • Zahn D, Hochrein O. On the composition and atomic arrangement of calcium-deficient hydroxyapatite: an ab-initio analysis. J Solid State Chem 2008; 181:1712 - 6; http://dx.doi.org/10.1016/j.jssc.2008.03.035
  • Brown PW, Martin RI. An analysis of hydroxyapatite surface layer formation. J Phys Chem B 1999; 103:1671 - 5; http://dx.doi.org/10.1021/jp982554i
  • Honghui Z, Hui L, Linghong G. Molecular and crystal structure characterization of calcium-deficient apatite. Key Eng Mater 2007; 330-332:119 - 22; http://dx.doi.org/10.4028/www.scientific.net/KEM.330-332.119
  • Viswanath B, Shastry VV, Ramamurty U, Ravishankar N. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals. Acta Mater 2010; 58:4841 - 8; http://dx.doi.org/10.1016/j.actamat.2010.05.019
  • Mortier A, Lemaître J, Rodrique L, Rouxhet PG. Synthesis and thermal behavior of well-crystallized calcium-deficient phosphate apatite. J Solid State Chem 1989; 78:215 - 9; http://dx.doi.org/10.1016/0022-4596(89)90099-6
  • Jeanjean J, McGrellis S, Rouchaud JC, Fedoroff M, Rondeau A, Perocheau S, et al. A crystallographic study of the sorption of cadmium on calcium hydroxyapatites: incidence of cationic vacancies. J Solid State Chem 1996; 126:195 - 201; http://dx.doi.org/10.1006/jssc.1996.0329
  • Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 2005; 26:1317 - 27; http://dx.doi.org/10.1016/j.biomaterials.2004.04.038; PMID: 15475062
  • Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite thermal decomposition. J Solid State Chem 2001; 160:340 - 9; http://dx.doi.org/10.1006/jssc.2000.9238
  • Matsunaga K. Theoretical investigation of the defect formation mechanism relevant to nonstoichiometry in hydroxyapatite. Phys Rev B 2008; 77:104106 - 20; http://dx.doi.org/10.1103/PhysRevB.77.104106
  • Bourgeois B, Laboux O, Obadia L, Gauthier O, Betti E, Aguado E, et al. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J Biomed Mater Res A 2003; 65:402 - 8; http://dx.doi.org/10.1002/jbm.a.10518; PMID: 12746888
  • Liu TY, Chen SY, Liu DM, Liou SC. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release 2005; 107:112 - 21; http://dx.doi.org/10.1016/j.jconrel.2005.05.025; PMID: 15982777
  • Tsuchida T, Yoshioka T, Sakuma S, Takeguchi T, Ueda W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind Eng Chem Res 2008; 47:1443 - 52; http://dx.doi.org/10.1021/ie0711731
  • Elliott JC, Mackie PE, Young RA. Monoclinic hydroxyapatite. Science 1973; 180:1055 - 7; http://dx.doi.org/10.1126/science.180.4090.1055; PMID: 17806580
  • Rangavittal N, Landa-Cánovas AR, González-Calbet JM, Vallet-Regí M. Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: two important bioceramics. J Biomed Mater Res 2000; 51:660 - 8; http://dx.doi.org/10.1002/1097-4636(20000915)51:4<660::AID-JBM14>3.0.CO;2-B; PMID: 10880114
  • Kim JY, Fenton RR, Hunter BA, Kennedy BJ. Powder diffraction studies of synthetic calcium and lead apatites. Aust J Chem 2000; 53:679 - 86; http://dx.doi.org/10.1071/CH00060
  • Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 1964; 204:1050 - 2; http://dx.doi.org/10.1038/2041050a0; PMID: 14243377
  • Treboux G, Layrolle P, Kanzaki N, Onuma K, Ito A. Existence of Posner’s cluster in vacuum. J Phys Chem A 2000; 104:5111 - 4; http://dx.doi.org/10.1021/jp994399t
  • Gilmore RS, Katz JL. Elastic properties of apatites. J Mater Sci 1982; 17:1131 - 41; http://dx.doi.org/10.1007/BF00543533
  • Calderin L, Stott MJ, Rubio A. Electronic and crystallographic structure of apatites. Phys Rev B 2003; 67:134106 - 12; http://dx.doi.org/10.1103/PhysRevB.67.134106
  • Rulis P, Ouyang L, Ching WY. Electronic structure and bonding in calcium apatite crystals: hydroxyapatite, fluorapatite, chlorapatite and bromapatite. Phys Rev B 2004; 70:155104 - 12; http://dx.doi.org/10.1103/PhysRevB.70.155104
  • Snyders R, Music D, Sigumonrong D, Schelnberger B, Jensen J, Schneider JM. Experimental and ab initio study of the mechanical properties of hydroxyapatite. Appl Phys Lett 2007; 90:193902 - 5; http://dx.doi.org/10.1063/1.2738386
  • Ching WY, Rulis P, Misra A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater 2009; 5:3067 - 75; http://dx.doi.org/10.1016/j.actbio.2009.04.030; PMID: 19442769
  • Treboux G, Layrolle P, Kanzaki N, Onuma K, Ito A. Symmetry of Posner’s cluster. J Am Chem Soc 2000; 122:8323 - 4; http://dx.doi.org/10.1021/ja994286n
  • Yin X, Stott MJ. Biological calcium phosphates and Posner’s cluster. J Chem Phys 2003; 118:3717 - 23; http://dx.doi.org/10.1063/1.1539093
  • Kanzaki N, Treboux G, Onuma K, Tsutsumi S, Ito A. Calcium phosphate clusters. Biomaterials 2001; 22:2921 - 9; http://dx.doi.org/10.1016/S0142-9612(01)00039-4; PMID: 11561898
  • Calderin L, Dunfield D, Stott MJ. Shell-model study of the lattice dynamics of hydroxyapatite. Phys Rev B 2005; 72:224304 - 17; http://dx.doi.org/10.1103/PhysRevB.72.224304
  • Tanaka Y, Iwasaki T, Nakamura M, Nagai A, Katayama K, Yamashita K. Polarization and microstructural effects of ceramic hydroxyapatite electrets. J Appl Phys 2010; 107:014107 - 17; http://dx.doi.org/10.1063/1.3265429
  • Tanaka Y, Iwasaki T, Katayama K, Hojo J, Yamashita K. Effect of ionic polarization on crystal structure of hydroxyapatite ceramic with hydroxide nonstoichiometry. J Jpn Soc Powder and Powder Metall 2010; 57:520 - 8; http://dx.doi.org/10.2497/jjspm.57.520
  • Tofail SAM, Baldisserri C, Haverty D, McMonagle JB, Erhart J. Pyroelectric surface charge in hydroxyapatite ceramics. J Appl Phys 2009; 106:106104; http://dx.doi.org/10.1063/1.3262628
  • Kawabata K, Yamamoto T. First-principles calculations of the elastic properties of hydroxyapatite doped with divalent ions. J Ceram Soc Jpn 2010; 118:548 - 9; http://dx.doi.org/10.2109/jcersj2.118.548
  • Matsunaga K, Kuwabara A. First-principles study of vacancy formation in hydroxyapatite. Phys Rev B 2007; 75:14102 - 11; http://dx.doi.org/10.1103/PhysRevB.75.014102
  • de Leeuw NH. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem 2010; 20:5376 - 89; http://dx.doi.org/10.1039/b921400c
  • Corno M, Rimola A, Bolis V, Ugliengo P. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules. Phys Chem Chem Phys 2010; 12:6309 - 29; http://dx.doi.org/10.1039/c002146f; PMID: 20485772
  • El Briak-Benabdeslam H, Ginebra MP, Vert M, Boudeville P, Briak-Ben El. Wet or dry mechanochemical synthesis of calcium phosphates? Influence of the water content on DCPD-CaO reaction kinetics. Acta Biomater 2008; 4:378 - 86; http://dx.doi.org/10.1016/j.actbio.2007.07.003; PMID: 17827078
  • LeGeros RZ, LeGeros JP. Dense hydroxyapatite. In: An introduction to bioceramics. Hench LL, Wilson J, Eds. World Scientific: London UK 1993; 139-80.
  • Rodriguez-Lorenzo LM, Vallet-Regí M. Controlled crystallization of calcium phosphate apatites. Chem Mater 2000; 12:2460 - 5; http://dx.doi.org/10.1021/cm001033g
  • Cazalbou S, Combes C, Eichert D, Rey C. Adaptive physico-chemistry of bio-related calcium phosphates. J Mater Chem 2004; 14:2148 - 53; http://dx.doi.org/10.1039/b401318b
  • Markovic M, Fowler BO, Tung MS. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol 2004; 109:553 - 68
  • Ioku K, Kawachi G, Sasaki S, Fujimori H, Goto S. Hydrothermal preparation of tailored hydroxyapatite. J Mater Sci 2006; 41:1341 - 4; http://dx.doi.org/10.1007/s10853-006-7338-5
  • Ito N, Kamitakahara M, Murakami S, Watanabe N, Ioku K. Hydrothermal synthesis and characterization of hydroxyapatite from octacalcium phosphate. J Ceram Soc Jpn 2010; 118:762 - 6; http://dx.doi.org/10.2109/jcersj2.118.762
  • Layrolle P, Lebugle A. Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol. Chem Mater 1994; 6:1996 - 2004; http://dx.doi.org/10.1021/cm00047a019
  • Layrolle P, Lebugle A. Synthesis in pure ethanol and characterization of nanosized calcium phosphate fluoroapatite. Chem Mater 1996; 8:134 - 44; http://dx.doi.org/10.1021/cm950326k
  • Yeong B, Junmin X, Wang J. Mechanochemical synthesis of hydroxyapatite from calcium oxide and brushite. J Am Ceram Soc 2001; 84:465 - 7; http://dx.doi.org/10.1111/j.1151-2916.2001.tb00681.x
  • Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974; 247:220 - 2; http://dx.doi.org/10.1038/247220a0; PMID: 4149289
  • Ben-Nissan B. Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 2003; 7:283 - 8; http://dx.doi.org/10.1016/j.cossms.2003.10.001
  • Ben-Nissan B, Milev A, Vago R. Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 2004; 25:4971 - 5; http://dx.doi.org/10.1016/j.biomaterials.2004.02.006; PMID: 15109858
  • Elliott JC, Young RA. Conversion of single crystals of chlorapatite into single crystals of hydroxyapatite. Nature 1967; 214:904 - 6; http://dx.doi.org/10.1038/214904b0
  • Tao J, Jiang W, Pan H, Xu X, Tang R. Preparation of large-sized hydroxyapatite single crystals using homogeneous releasing controls. J Cryst Growth 2007; 308:151 - 8; http://dx.doi.org/10.1016/j.jcrysgro.2007.08.009
  • Vallet-Regí M, Gutierrez Rios MT, Alonso MP, de Frutos MI, Nicolopoulos S. Hydroxyapatite particles synthesized by pyrolysis of an aerosol. J Solid State Chem 1994; 112:58 - 64; http://dx.doi.org/10.1006/jssc.1994.1264
  • Montero ML, Sáenz A, Rodríguez JG, Arenas J, Castaño VM. Electrochemical synthesis of nanosized hydroxyapatite. J Mater Sci 2006; 41:2141 - 4; http://dx.doi.org/10.1007/s10853-006-5231-x
  • Kumar AR, Kalainathan S. Growth and characterization of nano-crystalline hydroxyapatite at physiological conditions. Cryst Res Technol 2008; 43:640 - 4; http://dx.doi.org/10.1002/crat.200711094
  • Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 2007; 27:441 - 9; http://dx.doi.org/10.1016/j.msec.2006.05.018
  • Melikhov IV, Komarov VF, Severin AV, Bozhevolnov VE, Rudin VN. Two-dimensional crystalline hydroxyapatite. Dokl Phys Chem 2000; 373:125 - 8
  • Suvorova EI, Buffat PA. Electron diffraction and HRTEM characterization of calcium phosphate precipitation from aqueous solutions under biomineralization conditions. Eur Cell Mater 2001; 1:27 - 42; PMID: 14562263
  • Suvorova EI, Buffat PA. Model of the mechanism of Ca loss by bones under microgravity and earth conditions. J Biomed Mater Res 2002; 63:424 - 32; http://dx.doi.org/10.1002/jbm.10256; PMID: 12115751
  • Uematsu K, Takagi M, Honda T, Uchida N, Saito K. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. J Am Ceram Soc 1989; 72:1476 - 8; http://dx.doi.org/10.1111/j.1151-2916.1989.tb07680.x
  • Takikawa K, Akao M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in vivo. J Mater Sci Mater Med 1996; 7:439 - 45; http://dx.doi.org/10.1007/BF00122014
  • Watanabe Y, Ikoma T, Monkawa A, Suetsugu Y, Yamada H, Tanaka J, et al. Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J Am Ceram Soc 2005; 88:243 - 5; http://dx.doi.org/10.1111/j.1551-2916.2004.00041.x
  • Kotobuki N, Ioku K, Kawagoe D, Fujimori H, Goto S, Ohgushi H. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 2005; 26:779 - 85; http://dx.doi.org/10.1016/j.biomaterials.2004.03.020; PMID: 15350783
  • Perloff A, Posner AS. Preparation of pure hydroxyapatite crystals. Science 1956; 124:583 - 4; http://dx.doi.org/10.1126/science.124.3222.583-a; PMID: 17807921
  • LeGeros RZ, LeGeros JP, Daculsi G, Kijkowska R. Calcium phosphate biomaterials: preparation, properties and biodegradation. In: Encyclopedic handbook of biomaterials and bioengineering. Part A: Materials. Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER, Eds., Marcel Dekker: New York USA 1995; 2:1429-63.
  • Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. J Mater Sci 1996; 31:1 - 21; http://dx.doi.org/10.1007/BF00355120
  • Orlovskii VP, Barinov SM. Hydroxyapatite and hydroxyapatite-matrix materials: a survey. Russ J Inorg Chem 2001; 46:129 - 49
  • Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS. Solution synthesis of hydroxyapatite designer particulates. Solid State Ion 2002; 151:393 - 402; http://dx.doi.org/10.1016/S0167-2738(02)00545-3
  • Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 2002; 38:973 - 84; http://dx.doi.org/10.1023/A:1020585800572
  • Pena J, Vallet-Regí M. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc 2003; 23:1687 - 96; http://dx.doi.org/10.1016/S0955-2219(02)00369-2
  • Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 2002; 62:600 - 12; http://dx.doi.org/10.1002/jbm.10280; PMID: 12221709
  • Norton J, Malik KR, Darr JA, Rehman IU. Recent developments in processing and surface modification of hydroxyapatite. Adv Appl Ceramics 2006; 105:113 - 39; http://dx.doi.org/10.1179/174367606X102278
  • Rakovan J. Growth and surface properties of apatite. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC, USA 2002; 48:51-86.
  • Dorozhkin SV. A review on the dissolution models of calcium apatites. Prog Cryst Growth Charact 2002; 44:45 - 61; http://dx.doi.org/10.1016/S0960-8974(02)00004-9
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998; 13:94 - 117; http://dx.doi.org/10.1557/JMR.1998.0015
  • Willmann G. Coating of implants with hydroxyapatite-material connections between bone and metal. Adv Eng Mater 1999; 1:95 - 105; http://dx.doi.org/10.1002/(SICI)1527-2648(199910)1:2<95::AID-ADEM95>3.0.CO;2-P
  • Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 2001; 58:570 - 92; http://dx.doi.org/10.1002/jbm.1056; PMID: 11505433
  • Ong JL, Chan DCN. Hydroxyapatites and their use as coatings in dental implants: a review. Crit Rev Biomed Eng 1999; 28:667 - 707
  • Geesink RG. Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res 2002; 395:53 - 65; http://dx.doi.org/10.1097/00003086-200202000-00007; PMID: 11937866
  • Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74:1487 - 510; http://dx.doi.org/10.1111/j.1151-2916.1991.tb07132.x
  • Hench LL. Bioceramics. J Am Ceram Soc 1998; 81:1705 - 28; http://dx.doi.org/10.1111/j.1151-2916.1998.tb02540.x
  • Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D. Characterization of microplasma sprayed hydroxyapatite coating. J. Thermal Spray Technol 2009; 18:578 - 92; http://dx.doi.org/10.1007/s11666-009-9386-2
  • Mangano C, Piattelli A, Perrotti V, Iezzi G. Dense hydroxyapatite inserted into postextraction sockets: a histologic and histomorphometric 20-year case report. J Periodontol 2008; 79:929 - 33; http://dx.doi.org/10.1902/jop.2008.070245; PMID: 18454673
  • Dickinson W. Chromatography of insulin on calcium phosphate columns. Nature 1956; 178:994 - 5; http://dx.doi.org/10.1038/178994b0; PMID: 13378507
  • Bernardi G. Chromatography of nucleic acids on hydroxyapatite. Nature 1965; 206:779 - 83; http://dx.doi.org/10.1038/206779a0; PMID: 5840127
  • Xia Z, Duan X, Locklin RM, Quijano M, Dobson RL, Triffitt JT, et al. Evaluation of the relative mineral-binding affinities of clinically-relevant bisphosphonates by using hydroxyapatite-column chromatography and adsorption isotherms combined with mass spectrometric analysis. Bone 2008; 42:90 - 1; http://dx.doi.org/10.1016/j.bone.2007.12.172; PMID: 17997377
  • Brand M, Rampalli S, Chaturvedi CP, Dilworth FJ. Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography. Nat Protoc 2008; 3:398 - 409; http://dx.doi.org/10.1038/nprot.2008.8; PMID: 18323811
  • Yoshitake T, Kobayashi S, Ogawa T, Okuyama T. Hydroxyapatite chromatography of guanidine denatured proteins: 1. Guanidine containing phosphate buffer system. Chromatography 2006; 27:19 - 26
  • Smith GP, Gingrich TR. Hydroxyapatite chromatography of phage-display virions. Biotechniques 2005; 39:879 - 84; http://dx.doi.org/10.2144/000112032; PMID: 16382907
  • Jungbauer A, Hahn R, Deinhofer K, Luo P. Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol Bioeng 2004; 87:364 - 75; http://dx.doi.org/10.1002/bit.20121; PMID: 15281111
  • Doonan S. Chromatography on hydroxyapatite. Methods Mol Biol 2004; 244:191 - 4; PMID: 14970557
  • Cummings LJ, Snyder MA, Brisack K. Protein chromatography on hydroxyapatite columns. Methods Enzymol 2009; 463:387 - 404; http://dx.doi.org/10.1016/S0076-6879(09)63024-X; PMID: 19892184
  • Gagnon P. Monoclonal antibody purification with hydroxyapatite. N Biotechnol 2009; 25:287 - 93; http://dx.doi.org/10.1016/j.nbt.2009.03.017; PMID: 19491046
  • Palazzo B, Sidoti MC, Roveri N, Tampieri A, Sandri M, Bertolazzi L, et al. Controlled drug delivery from porous hydroxyapatite grafts: an experimental and theoretical approach. Mater Sci Eng C 2005; 25:207 - 13; http://dx.doi.org/10.1016/j.msec.2005.01.011
  • Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 2007; 17:2180 - 8; http://dx.doi.org/10.1002/adfm.200600361
  • Tang SH, Jin AM, Lü RF, Wang XD, Wang YF, Yu B, et al. Preparation and in vivo release experiment of nano-hydroxyapatite/gentamicin drug delivery system. J Clin Rehabil Tiss Eng Res 2007; 11:3573 - 6
  • Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 2010; 6:2212 - 8; http://dx.doi.org/10.1016/j.actbio.2009.12.014; PMID: 20004747
  • Niwa M, Sato T, Li W, Aoki H, Aoki H, Daisaku T. Polishing and whitening properties of toothpaste containing hydroxyapatite. J Mater Sci Mater Med 2001; 12:277 - 81; http://dx.doi.org/10.1023/A:1008927502523; PMID: 15348313
  • Kim BI, Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD. Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng Mater 2006; 309-311:541 - 4; http://dx.doi.org/10.4028/www.scientific.net/KEM.309-311.541
  • Pietrasik J, Szustakiewicz K, Zaborski M, Haberko K. Hydroxyapatite: an environmentally friendly filler for elastomers. Mol Cryst Liq Cryst (Phila Pa) 2008; 483:172 - 8; http://dx.doi.org/10.1080/15421400801904880
  • Bailliez S, Nzihou A, Bèche E, Flamant G. Removal of lead (Pb) by hydroxyapatite sorbent. Process Saf Environ Prot 2004; 82:175 - 80; http://dx.doi.org/10.1205/095758204322972816
  • Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J Colloid Interface Sci 2008; 317:402 - 8; http://dx.doi.org/10.1016/j.jcis.2007.09.075; PMID: 17949731
  • Phonthammachai N, Ziyi Z, Jun G, Fan HY, White TJ. Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidation. Gold Bull 2008; 41:42 - 50; http://dx.doi.org/10.1007/BF03215622
  • Chen W, Huang ZL, Liu Y, He QJ. Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catal Commun 2008; 9:516 - 21; http://dx.doi.org/10.1016/j.catcom.2007.02.011
  • Domínguez MI, Romero-Sarria F, Centeno MA, Odriozola JA. Gold/hydroxyapatite catalysts. Synthesis, characterization and catalytic activity to CO oxidation. Appl Catal B 2009; 87:245 - 51; http://dx.doi.org/10.1016/j.apcatb.2008.09.016
  • Xu J, White T, Li P, He C, Han YF. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J Am Chem Soc 2010; 132:13172 - 3; http://dx.doi.org/10.1021/ja1058923; PMID: 20815345
  • de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H 1998; 212:137 - 47; http://dx.doi.org/10.1243/0954411981533917; PMID: 9612005
  • Gross KA, Berndt CC. Biomedical application of apatites. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC, USA 2002; 48:631-72.
  • Ferraz MP, Monteiro FJ, Manuel CM. Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater. Biomech 2004; 2:74 - 80
  • Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004; 2:65 - 73; PMID: 20803439
  • Aoki H. Science and medical applications of hydroxyapatite. JAAS: Tokyo, Japan 1991; 245.
  • Busch S, Dolhaine H, Duchesne A, Heinz S, Hochrein O, Laeri F, et al. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur J Inorg Chem 1999; 1643 - 53; http://dx.doi.org/10.1002/(SICI)1099-0682(199910)1999:10<1643::AID-EJIC1643>3.0.CO;2-J
  • Kniep R, Busch S. Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices. Angew Chem Int Ed Engl 1996; 35:2624 - 6; http://dx.doi.org/10.1002/anie.199626241
  • Godiebel C, Simon P, Buder J, Tlatlik H, Kniep R. Phase formation and morphology of calcium phosphate-gelatine-composites grown by double diffusion technique: the influence of fluoride. J Mater Chem 2004; 14:2225 - 30; http://dx.doi.org/10.1039/b403503h
  • Prymak O, Sokolova V, Peitsch T, Epple M. The crystallization of fluoroapatite dumbbells from supersaturated aqueous solution. Cryst Growth Des 2006; 6:498 - 506; http://dx.doi.org/10.1021/cg050428f
  • Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R. Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem Int Ed Engl 2006; 45:1905 - 10; http://dx.doi.org/10.1002/anie.200503610; PMID: 16493717
  • Simon P, Zahn D, Lichte H, Kniep R. Intrinsic electric dipole fields and the induction of hierarchical form developments in fluorapatite-gelatine nanocomposites: a general principle for morphogenesis of biominerals?. Angew Chem Int Ed Engl 2006; 45:1911 - 5; http://dx.doi.org/10.1002/anie.200504465; PMID: 16493721
  • Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions. Cryst Growth Des 2010; 10:4240 - 2; http://dx.doi.org/10.1021/cg100859m
  • Dorozhkin SV. A hierarchical structure for apatite crystals. J Mater Sci Mater Med 2007; 18:363 - 6; http://dx.doi.org/10.1007/s10856-006-0701-x; PMID: 17323170
  • Mehmel M. On the structure of apatite. I. Z Kristallogr 1930; 75:323 - 31
  • Naray-Szabo S. The structure of apatite (CaF)Ca4(PO4)3. Z Kristallogr 1930; 75:387 - 98
  • Sudarsanan K, Mackie PE, Young RA. Comparison of synthetic and mineral fluorapatite, Ca5(PO4)3F, in crystallographic detail. Mater Res Bull 1972; 7:1331 - 7; http://dx.doi.org/10.1016/0025-5408(72)90113-4
  • Barinov SM, Shvorneva LI, Ferro D, Fadeeva IV, Tumanov SV. Solid solution formation at the sintering of hydroxyapatite-fluorapatite ceramics. Sci Technol Adv Mater 2004; 5:537 - 41; http://dx.doi.org/10.1016/j.stam.2004.02.012
  • Nikcevic I, Jokanovic V, Mitric M, Nedic Z, Makovec D, Uskokovic D. Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J Solid State Chem 2004; 177:2565 - 74; http://dx.doi.org/10.1016/j.jssc.2004.03.024
  • Cheng K, Weng W, Qu H, Du P, Shen G, Han G, et al. Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films. J Biomed Mater Res B Appl Biomater 2004; 69:33 - 7; http://dx.doi.org/10.1002/jbm.b.20027; PMID: 15015207
  • Rodríguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 2003; 24:3777 - 85; http://dx.doi.org/10.1016/S0142-9612(03)00259-X; PMID: 12818550
  • Wei M, Evans JH, Bostrom T, Grøndahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med 2003; 14:311 - 20; http://dx.doi.org/10.1023/A:1022975730730; PMID: 15348455
  • Daculsi G, Kerebel LM. Ultrastructural study and comparative analysis of fluoride content of enameloid in sea-water and fresh-water sharks. Arch Oral Biol 1980; 25:145 - 51; http://dx.doi.org/10.1016/0003-9969(80)90013-8; PMID: 6930954
  • Daculsi G, Kerebel LM, Kerebel B. Effects of fluoride on human enamel and selachian enameloid in vitro: a high-resolution TEM and electron diffraction study. Calcif Tissue Int 1981; 33:9 - 13; http://dx.doi.org/10.1007/BF02409406; PMID: 6780160
  • Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. In: Biomineralization. Series: Reviews in Mineralogy and Geochemistry. Dove PM, de Yoreo JJ, Weiner S, Eds. Mineralogical Society of America: Washington DC, USA 2003; 54:1-29.
  • Dahm S, Risnes S. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite. Calcif Tissue Int 1999; 65:459 - 65; http://dx.doi.org/10.1007/s002239900733; PMID: 10594165
  • Carr A, Kemp A, Tibbetts I, Truss R, Drennan J. Microstructure of pharyngeal tooth enameloid in the parrotfish Scarus rivulatus (Pisces: Scaridae). J Microsc 2006; 221:8 - 16; http://dx.doi.org/10.1111/j.1365-2818.2006.01526.x; PMID: 16438685
  • Lévêque I, Cusack M, Davis SA, Mann S. Promotion of fluorapatite crystallization by soluble-matrix proteins from Lingula anatina shells. Angew Chem Int Ed Engl 2004; 43:885 - 8; http://dx.doi.org/10.1002/anie.200353115; PMID: 14767966
  • Heling I, Heindel R, Merin B. Calcium-fluorapatite. A new material for bone implants. J Oral Implantol 1981; 9:548 - 55; PMID: 6951058
  • Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites. Chem Mater 2001; 13:3260 - 71; http://dx.doi.org/10.1021/cm0110728
  • Kniep R, Simon P. Fluorapatite-gelatine-nanocomposites: self-organized morphogenesis, real structure and relations to natural hard materials. Top Curr Chem 2006; 270:73 - 125; http://dx.doi.org/10.1007/128_053
  • Bogdanov BI, Pashev PS, Hristov JH, Markovska IG. Bioactive fluorapatite-containing glass ceramics. Ceram Int 2009; 35:1651 - 5; http://dx.doi.org/10.1016/j.ceramint.2008.07.021
  • Savarino L, Fini M, Ciapetti G, Cenni E, Granchi D, Baldini N, et al. Biologic effects of surface roughness and fluorhydroxyapatite coating on osteointegration in external fixation systems: an in vivo experimental study. J Biomed Mater Res A 2003; 66:652 - 61; http://dx.doi.org/10.1002/jbm.a.10018; PMID: 12918049
  • Vitkovic M, Noaman MSM, Palou MT, Jantová S. Potential applications of fluorhydroxyapatite as biomaterials in medicine. Cent Eur J Chem 2009; 7:246 - 51; http://dx.doi.org/10.2478/s11532-009-0010-6
  • Chaari K, Ayed FB, Bouaziz J, Bouzouita K. Elaboration and characterization of fluorapatite ceramic with controlled porosity. Mater Chem Phys 2009; 113:219 - 26; http://dx.doi.org/10.1016/j.matchemphys.2008.07.079
  • Bibby JK, Bubb NL, Wood DJ, Mummery PM. Fluorapatite-mullite glass sputter coated Ti6Al4V for biomedical applications. J Mater Sci Mater Med 2005; 16:379 - 85; http://dx.doi.org/10.1007/s10856-005-6975-6; PMID: 15875245
  • Yoon BH, Kim HW, Lee SH, Bae CJ, Koh YH, Kong YM, et al. Stability and cellular responses to fluorapatite-collagen composites. Biomaterials 2005; 26:2957 - 63; http://dx.doi.org/10.1016/j.biomaterials.2004.07.062; PMID: 15603790
  • Gineste L, Gineste M, Ranz X, Ellefterion A, Guilhem A, Rouquet N, et al. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res 1999; 48:224 - 34; http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:3<224::AID-JBM5>3.0.CO;2-A; PMID: 10398025
  • Bhadang KA, Gross KA. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 2004; 25:4935 - 45; http://dx.doi.org/10.1016/j.biomaterials.2004.02.043; PMID: 15109854
  • Gross KA, Bhadang KA. Sintered hydroxyfluorapatites. Part III: sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 2004; 25:1395 - 405; http://dx.doi.org/10.1016/j.biomaterials.2003.08.051; PMID: 14643614
  • Barinov SM, Rustichelli F, Orlovskii VP, Lodini A, Oscarsson S, Firstov SA, et al. Influence of fluorapatite minor additions on behavior of hydroxyapatite ceramics. J Mater Sci Mater Med 2004; 15:291 - 6; http://dx.doi.org/10.1023/B:JMSM.0000015490.32304.f4; PMID: 15335002
  • Agathopoulos S, Tulyaganov DU, Marques PAAP, Ferro MC, Fernandes MH, Correia RN. The fluorapatite-anorthite system in biomedicine. Biomaterials 2003; 24:1317 - 31; http://dx.doi.org/10.1016/S0142-9612(02)00468-4; PMID: 12527274
  • Qu H, Wei M. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater 2006; 2:113 - 9; http://dx.doi.org/10.1016/j.actbio.2005.09.003; PMID: 16701866
  • Bhadang KA, Holding CA, Thissen H, McLean KM, Forsythe JS, Haynes DR. Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater 2010; 6:1575 - 83; http://dx.doi.org/10.1016/j.actbio.2009.10.029; PMID: 19857609
  • Theiszova M, Jantova S, Letasiova S, Palou M, Cipak L. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study. Neoplasma 2008; 55:312 - 6; PMID: 18505342
  • An L, Zhang L, Zou J. Fluorapatite: an effective solid base catalyst for Michael addition of indole/pyrrole to nitroalkenes under solventless condition. Chin J Chem 2009; 27:2223 - 8; http://dx.doi.org/10.1002/cjoc.200990373
  • Gross KA, Berndt CC, Dinnebier R, Stephens P. Oxyapatite in hydroxyapatite coatings. J Mater Sci Mater Med 1998; 33:3985 - 91
  • Alberius-Henning P, Adolfsson E, Grins J, Fitch A. Triclinic oxy-hydroxyapatite. J Mater Sci 2001; 36:663 - 8; http://dx.doi.org/10.1023/A:1004876622105
  • van’t Hoen C, Rheinberger V, Höland W, Apel E. Crystallization of oxyapatite in glass-ceramics. J Eur Ceram Soc 2007; 27:1579 - 84; http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.095
  • de Leeuw NH, Bowe JR, Rabone JAL. A computational investigation of stoichiometric and calcium-deficient oxy- and hydroxy-apatites. Faraday Discuss 2007; 134:195 - 214, discussion 215-33, 415-9; http://dx.doi.org/10.1039/b602012g; PMID: 17326570
  • Duff EJ. Orthophosphates—VII. Thermodynamical considerations concerning the stability of oxyapatite, Ca10O(PO4)6, in aqueous media. J Inorg Nucl Chem 1972; 34:853 - 7; http://dx.doi.org/10.1016/0022-1902(72)80059-9
  • To honor Gustav Hilgenstock (1844–1913), a German metallurgist, who first discovered it in Thomas slags nearly 120 years ago [12 and 13].
  • Kai D, Fan H, Li D, Zhu X, Zhang X. Preparation of tetracalcium phosphate and the effect on the properties of calcium phosphate cement. Mater Sci Forum 2009; 610-613:1356 - 9; http://dx.doi.org/10.4028/www.scientific.net/MSF.610-613.1356
  • Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res Nat Bur Stand A 1965; 69:547 - 51
  • Romeo HE, Fanovich MA. Synthesis of tetracalcium phosphate from mechanochemically activated reactants and assessment as a component of bone cements. J Mater Sci Mater Med 2008; 19:2751 - 60; http://dx.doi.org/10.1007/s10856-008-3403-8; PMID: 18305903
  • Jalota S, Tas AC, Bhaduri SB. Synthesis of HA-seeded TTCP (Ca4(PO4)2O) powders at 1,230°C from Ca(CH3COO)2·H2O and NH4H2PO4. J Am Ceram Soc 2005; 88:3353 - 60; http://dx.doi.org/10.1111/j.1551-2916.2005.00623.x
  • Moseke C, Gbureck U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater 2010; 6:3815 - 23; http://dx.doi.org/10.1016/j.actbio.2010.04.020; PMID: 20438869
  • Martin I, Brown PW. Hydration of tetracalcium phosphate. Adv Chem Res 1993; 5:115 - 25
  • Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions. J Mater Sci Mater Med 1999; 10:177 - 83; http://dx.doi.org/10.1023/A:1008989525461; PMID: 15348166
  • Dickens B, Brown WE, Kruger GJ, Stewart JM. Ca4(PO4)2O, tetracalcium diphosphate monoxide, crystal structures and relationships to Ca5(PO4)3OH and K3Na(SO4)2. Acta Crystallogr B 1973; 29:2046 - 56; http://dx.doi.org/10.1107/S0567740873006102
  • Jillavenatesa A, Condrate RA Sr.. The infrared and Raman spectra of tetracalcium phosphate (Ca4(PO4)2O). Spectrosc Lett 1997; 30:1561 - 70; http://dx.doi.org/10.1080/00387019708006744
  • Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 2012; In press PMID: 21945826
  • Nakano T, Kaibara K, Umakoshi Y, Imazato S, Ogata K, Ehara A, et al. Change in microstructure and solubility improvement of HAp ceramics by heat-treatment in a vacuum. Mater Trans 2002; 43:3105 - 11; http://dx.doi.org/10.2320/matertrans.43.3105
  • Kiba W, Imazato S, Takahashi Y, Yoshioka S, Ebisu S, Nakano T. Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J Dent 2010; 38:828 - 37; http://dx.doi.org/10.1016/j.jdent.2010.06.016; PMID: 20615446
  • Pan L, Li Y, Weng W, Cheng K, Song C, Du P, et al. Preparation of submicron biphasic α-TCP/HA powders. Key Eng Mater 2006; 309-311:219 - 22; http://dx.doi.org/10.4028/www.scientific.net/KEM.309-311.219
  • Kui C. Slip casting derived α-TCP/HA biphasic ceramics. Key Eng Mater 2007; 330-332:51 - 4; http://dx.doi.org/10.4028/www.scientific.net/KEM.330-332.51
  • Sanchez-Sálcedo S, Arcos D, Vallet-Regí M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 2008; 377:19 - 42; http://dx.doi.org/10.4028/www.scientific.net/KEM.377.19
  • Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomed Mater Res B Appl Biomater 2009; 89:508 - 17; http://dx.doi.org/10.1002/jbm.b.31242; PMID: 18937266
  • Oishi M, Ohtsuki C, Kitamura M, Kamitakahara M, Ogata S, Miyazaki T, et al. Fabrication and chemical durability of porous bodies consisting of biphasic tricalcium phosphates. Phosphorus Res Bull 2004; 17:95 - 100
  • Kamitakahara M, Ohtsuki C, Oishi M, Ogata S, Miyazaki T, Tanihara M. Preparation of porous biphasic tricalcium phosphate and its in vivo behavior. Key Eng Mater 2005; 284-286:281 - 4; http://dx.doi.org/10.4028/www.scientific.net/KEM.284-286.281
  • Wang R, Weng W, Deng X, Cheng K, Liu X, Du P, et al. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng Mater 2006; 309-311:223 - 6; http://dx.doi.org/10.4028/www.scientific.net/KEM.309-311.223
  • Li Y, Weng W, Tam KC. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate. Acta Biomater 2007; 3:251 - 4; http://dx.doi.org/10.1016/j.actbio.2006.07.003; PMID: 16979393
  • Li Y, Li D, Weng W. In vitro dissolution behavior of biphasic tricalcium phosphate composite powders composed of α-tricalcium phosphate and β-tricalcium phosphate. Key Eng Mater 2008; 368-372:1206 - 8; http://dx.doi.org/10.4028/www.scientific.net/KEM.368-372.1206
  • Vani R, Girija EK, Elayaraja K, Prakash Parthiban S, Kesavamoorthy R, Narayana Kalkura S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate. J Mater Sci Mater Med 2009; 20:Suppl 1 S43 - 8; http://dx.doi.org/10.1007/s10856-008-3480-8; PMID: 18560768
  • Huang Y, Huang W, Sun L, Wang Q, He A, Han CC. Phase transition from α-TCP into β-TCP in TCP/HA composites. Int J Appl Ceram Technol 2010; 7:184 - 8; http://dx.doi.org/10.1111/j.1744-7402.2009.02384.x
  • McConnell D, Posner AS. Carbonate in Apatites. Science 1961; 134:213 - 5; http://dx.doi.org/10.1126/science.134.3473.213; PMID: 17818721
  • Zapanta-LeGeros R. Effect of carbonate on the lattice parameters of apatite. Nature 1965; 206:403 - 4; http://dx.doi.org/10.1038/206403a0; PMID: 5835710
  • Legeros RZ, Trautz OR, Legeros JP, Klein E, Shirra WP. Apatite crystallites: effects of carbonate on morphology. Science 1967; 155:1409 - 11; http://dx.doi.org/10.1126/science.155.3768.1409; PMID: 17839613
  • Astala R, Stott MJ. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater 2005; 17:4125 - 33; http://dx.doi.org/10.1021/cm050523b
  • Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)(6-x)(CO3)(x)(OH)(2-x-2y)(CO3)(y) ceramics with controlled composition. J Eur Ceram Soc 2008; 28:139 - 47; http://dx.doi.org/10.1016/j.jeurceramsoc.2007.06.009
  • Tonegawa T, Ikoma T, Yoshioka T, Hanagata N, Tanaka J. Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J Mater Sci 2010; 45:2419 - 26; http://dx.doi.org/10.1007/s10853-010-4209-x
  • Yahia FBH, Jemal M. Synthesis, structural analysis and thermochemistry of B-type carbonate apatites. Thermochim Acta 2010; 50:22 - 32; http://dx.doi.org/10.1016/j.tca.2010.03.017
  • Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc 2007; 27:2287 - 94; http://dx.doi.org/10.1016/j.jeurceramsoc.2006.07.004
  • Teshima K, Yubuta K, Ooi S, Suzuki T, Shishido T, Oishi S. Environmentally friendly growth of calcium chlorapatite whiskers from a sodium chloride flux. Cryst Growth Des 2006; 6:2538 - 42; http://dx.doi.org/10.1021/cg0603671
  • García-Tuñón E, Franco J, Dacuña B, Zaragoza G, Guitián F. Chlorapatite conversion to hydroxyapatite under high temperature hydrothermal conditions. Mater Sci Forum 2010; 636-637:9 - 14; http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.9
  • Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J Am Ceram Soc 2008; 91:1 - 12; http://dx.doi.org/10.1111/j.1551-2916.2007.02117.x
  • Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 2010; 6:1882 - 94; http://dx.doi.org/10.1016/j.actbio.2009.12.041; PMID: 20040384
  • Pushpakanth S, Srinivasan B, Sastry TP, Mandal AB. Biocompatible and antibacterial properties of silver-doped hydroxyapatite. J Biomed Nanotechnol 2008; 4:62 - 6
  • Zhang Y, Yin QS, Zhang Y, Xia H, Ai FZ, Jiao YP, et al. Determination of antibacterial properties and cytocompatibility of silver-loaded coral hydroxyapatite. J Mater Sci Mater Med 2010; 21:2453 - 62; http://dx.doi.org/10.1007/s10856-010-4101-x; PMID: 20526656
  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, et al. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 1998; 9:129 - 34; http://dx.doi.org/10.1023/A:1008811501734; PMID: 15348901
  • Thomas S, Assi P, Marycel B, Correa M, Liberato W, Brito V. Yttrium 90-hydroxyapatite, a new radioisotope for chronic synovitis in hemophilia. Haemophilia 2008; 14:77
  • Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK, et al. Chemistry and biological behavior of samarium-153 and rhenium-186-labeled hydroxyapatite particles: potential radiopharmaceuticals for radiation synovectomy. J Nucl Med 1993; 34:1536 - 42; PMID: 8394883
  • Argüelles MG, Berlanga ISL, Torres EA. Preparation of 153Sm-particles for radiosynovectomy. J Radioanal Nucl Chem 1999; 240:509 - 11; http://dx.doi.org/10.1007/BF02349404
  • O’Duffy EK, Clunie GP, Lui D, Edwards JC, Ell PJ. Double blind glucocorticoid controlled trial of samarium-153 particulate hydroxyapatite radiation synovectomy for chronic knee synovitis. Ann Rheum Dis 1999; 58:554 - 8; http://dx.doi.org/10.1136/ard.58.9.554; PMID: 10460188
  • Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 2004; 32:1 - 31; http://dx.doi.org/10.1016/j.progsolidstchem.2004.07.001
  • Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 2008; 108:4754 - 83; http://dx.doi.org/10.1021/cr8004422; PMID: 19006400
  • Grynpas MD, Hancock RG, Greenwood C, Turnquist J, Kessler MJ. The effects of diet, age, and sex on the mineral content of primate bones. Calcif Tissue Int 1993; 52:399 - 405; http://dx.doi.org/10.1007/BF00310206; PMID: 8504378
  • Elliott JC. Calcium phosphate biominerals. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC, USA 2002; 48:13-49.
  • Boskey AL. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Curr Osteoporos Rep 2006; 4:71 - 5; http://dx.doi.org/10.1007/s11914-006-0005-6; PMID: 16822406
  • Holt LE, la Mer VK, Chown HB. Studies in calcification. I. The solubility product of secondary and tertiary calcium phosphate under various conditions. J Biol Chem 1925; 64:509 - 65
  • Holt LE, la Mer VK, Chown HB. Studies in calcification. II. Delayed equilibrium between the calcium phosphates and its biological significance. J Biol Chem 1925; 64:567 - 78
  • Gassmann T. The preparation of a complex salt corresponding to apatite-typhus and its relations to the constitution of bones. HSZ Physiol Chem 1913; 83:403 - 8
  • de Jong WF. La substance minérale dans les os. Recl Trav Chim Pays Bas 1926; 45:445 - 9; http://dx.doi.org/10.1002/recl.19260450613
  • Bredig MA. The apatite structure of inorganic bone and tooth substance. HS Z Physiol Chem 1933; 216:239 - 43; http://dx.doi.org/10.1515/bchm2.1933.216.5-6.239
  • Taylor NW, Sheard C. Microscopic and X-ray investigations on the calcification of tissue. J Biol Chem 1929; 81:479 - 93
  • Weiner S, Traub W, Wagner HD. Lamellar bone: structure-function relations. J Struct Biol 1999; 126:241 - 55; http://dx.doi.org/10.1006/jsbi.1999.4107; PMID: 10475685
  • Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 1991; 54:Suppl 245S - 60S; PMID: 2053570
  • Power ML, Heaney RP, Kalkwarf HJ, Pitkin RM, Repke JT, Tsang RC, et al. The role of calcium in health and disease. Am J Obstet Gynecol 1999; 181:1560 - 9; http://dx.doi.org/10.1016/S0002-9378(99)70404-7; PMID: 10601943
  • Jones FH. Teeth and bones: application of surface science to dental materials and related biomaterials. Surf Sci Rep 2001; 42:75 - 205; http://dx.doi.org/10.1016/S0167-5729(00)00011-X
  • Loveridge N. Bone: more than a stick. J Anim Sci 1999; 77:Suppl 2 190 - 6; PMID: 15526795
  • Nightingale JP, Lewis D. Pole figures of the orientation of apatite in bones. Nature 1971; 232:334 - 5; http://dx.doi.org/10.1038/232334a0; PMID: 5094837
  • Currey JD. Bones: structure and mechanics. Princeton Univercity Press: Princeton USA 2002; 456.
  • Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998; 20:92 - 102; http://dx.doi.org/10.1016/S1350-4533(98)00007-1; PMID: 9679227
  • Mann S. Biomimetic materials chemistry. VCH, Weinheim, Germany 1996; 400.
  • Hancox NM. Biology of bone. Cambridge University Press: Cambridge, MA USA 1972; 199.
  • Martin RB. Bone as a ceramic composite material. Mater Sci Forum 1999; 7:5 - 16; http://dx.doi.org/10.4028/www.scientific.net/MSF.293.5
  • Tzaphlidou M. Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 2008; 34:39 - 49; http://dx.doi.org/10.1007/s10867-008-9115-y; PMID: 19669491
  • Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, et al. Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 2006; 36:22 - 31; http://dx.doi.org/10.1016/j.semarthrit.2006.04.002; PMID: 16887465
  • Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993; 14:595 - 608; http://dx.doi.org/10.1016/8756-3282(93)90081-K; PMID: 8274302
  • Currey JD. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech 2004; 37:549 - 56; http://dx.doi.org/10.1016/j.jbiomech.2003.08.008; PMID: 14996567
  • Currey JD, Brear K, Zioupos P. Notch sensitivity of mammalian mineralized tissues in impact. Proc Biol Sci 2004; 271:517 - 22; http://dx.doi.org/10.1098/rspb.2003.2634; PMID: 15129962
  • Anderson JC, Eriksson C. Piezoelectric properties of dry and wet bone. Nature 1970; 227:491 - 2; http://dx.doi.org/10.1038/227491a0; PMID: 5428466
  • Lang SB. Pyroelectric effect in bone and tendon. Nature 1966; 212:704 - 5; http://dx.doi.org/10.1038/212704a0
  • Haynes V. Radiocarbon: analysis of inorganic carbon of fossil bone and enamel. Science 1968; 161:687 - 8; http://dx.doi.org/10.1126/science.161.3842.687; PMID: 4298852
  • Rensberger JM, Watabe M. Fine structure of bone in dinosaurs, birds and mammals. Nature 2000; 406:619 - 22; http://dx.doi.org/10.1038/35020550; PMID: 10949300
  • Kolodny Y, Luz B, Sander M, Clemens WA. Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeo 1996; 126:161 - 71; http://dx.doi.org/10.1016/S0031-0182(96)00112-5
  • Trueman CN, Tuross N. Trace elements in recent and fossil bone apatite. In: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry. Hughes JM, Kohn M, Rakovan J, Eds. Mineralogical Society of America: Washington DC, USA 2002; 48:489-522.
  • Currey JD, Brear K. Hardness, Young’s modulus and yield stress in mammalian mineralized tissues. J Mater Sci Mater Med 1990; 1:14 - 20; http://dx.doi.org/10.1007/BF00705348
  • Brown WE, Chow LC. Chemical properties of bone mineral. Annu Rev Mater Sci 1976; 6:213 - 36; http://dx.doi.org/10.1146/annurev.ms.06.080176.001241
  • Lakes R. Materials with structural hierarchy. Nature 1993; 361:511 - 5; http://dx.doi.org/10.1038/361511a0
  • Meyers MA, Lin AYM, Seki Y, Chen PY, Kad BK, Bodde S. Structural biological composites: an overview. JOM 2006; 58:36 - 43; http://dx.doi.org/10.1007/s11837-006-0138-1
  • Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006; 11:43 - 56; PMID: 16568401
  • Rey C, Combes C, Drouet C, Glimcher MJ. Bone mineral: update on chemical composition and structure. Osteoporos Int 2009; 20:1013 - 21; http://dx.doi.org/10.1007/s00198-009-0860-y; PMID: 19340505
  • Watt JC. The deposition of calcium phosphate and calcium carbonate in bone and in areas of calcification. Arch Surg Chicago 1925; 10:983 - 90; http://dx.doi.org/10.1001/archsurg.1925.01120120171007
  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: a new perspective. Mater Sci Eng Rep 2007; 58:77 - 116; http://dx.doi.org/10.1016/j.mser.2007.05.001
  • Boskey AL. Mineralization of bones and teeth. Elements 2007; 3:385 - 91; http://dx.doi.org/10.2113/GSELEMENTS.3.6.385
  • Glimcher MJ. Bone: nature of the calcium phosphate crystals and cellular, structural and physical chemical mechanisms in their formation. In: Medical Mineralogy and Geochemistry, Series: Reviews in Mineralogy and Geochemistry. Sahai N, Schoonen MAA, Eds. Mineralogical Society of America: Washington DC, USA 2006; 64:223-82.
  • Boskey AL, Roy R. Cell culture systems for studies of bone and tooth mineralization. Chem Rev 2008; 108:4716 - 33; http://dx.doi.org/10.1021/cr0782473; PMID: 18800815
  • Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng Rep 2007; 57:1 - 27; http://dx.doi.org/10.1016/j.mser.2007.04.001
  • Boskey AL, Coleman R. Aging and bone. J Dent Res 2010; 89:1333 - 48; http://dx.doi.org/10.1177/0022034510377791; PMID: 20924069
  • Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci 2008; 53:1 - 206; http://dx.doi.org/10.1016/j.pmatsci.2007.05.002
  • McKee MD, Addison WN, Kaartinen MT. Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells Tissues Organs 2005; 181:176 - 88; http://dx.doi.org/10.1159/000091379; PMID: 16612083
  • Currey JD. Materials science. Hierarchies in biomineral structures. Science 2005; 309:253 - 4; http://dx.doi.org/10.1126/science.1113954; PMID: 16002605
  • Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH, Finch MM, et al. Hierarchical interconnections in the nano-composite material bone: fibrillar cross-links resist fracture on several length scales. Compos Sci Technol 2006; 66:1202 - 8; http://dx.doi.org/10.1016/j.compscitech.2005.10.005
  • Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci 2007; 52:1263 - 334; http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
  • Athanasiou KA, Zhu C, Lanctot DR, Agrawal CM, Wang X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 2000; 6:361 - 81; http://dx.doi.org/10.1089/107632700418083; PMID: 10992433
  • Nikolov S, Raabe D. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 2008; 94:4220 - 32; http://dx.doi.org/10.1529/biophysj.107.125567; PMID: 18310256
  • Gupta HS, Wagermaier W, Zickler GA, Raz-Ben Aroush D, Funari SS, Roschger P, et al. Nanoscale deformation mechanisms in bone. Nano Lett 2005; 5:2108 - 11; http://dx.doi.org/10.1021/nl051584b; PMID: 16218747
  • Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater 2006; 5:52 - 5; http://dx.doi.org/10.1038/nmat1545; PMID: 16341218
  • Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 2008; 19:1251 - 65; http://dx.doi.org/10.1007/s00198-008-0579-1; PMID: 18317862
  • Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 2004; 14:2115 - 23; http://dx.doi.org/10.1039/b402005g
  • Marino AA, Becker RO. Evidence for direct physical bonding between the collagen fibres and apatite cystals in bone. Nature 1967; 213:697 - 8; http://dx.doi.org/10.1038/213697a0; PMID: 4291695
  • Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ. Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 2001; 19:1027 - 34; http://dx.doi.org/10.1016/S0736-0266(01)00034-1; PMID: 11781001
  • Clark SM, Iball J. Orientation of apatite crystals in bone. Nature 1954; 174:399 - 400; http://dx.doi.org/10.1038/174399a0; PMID: 13194002
  • Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003; 33:270 - 82; http://dx.doi.org/10.1016/S8756-3282(03)00194-7; PMID: 13678767
  • Su X, Sun K, Cui FZ, Landis WJ. Organization of apatite crystals in human woven bone. Bone 2003; 32:150 - 62; http://dx.doi.org/10.1016/S8756-3282(02)00945-6; PMID: 12633787
  • Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 1991; 48:407 - 13; http://dx.doi.org/10.1007/BF02556454; PMID: 2070275
  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 1996; 33:192 - 202; http://dx.doi.org/10.1002/(SICI)1097-0029(19960201)33:2<192::AID-JEMT9>3.0.CO;2-V; PMID: 8845518
  • Rosen VB, Hobbs LW, Spector M. The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 2002; 23:921 - 8; http://dx.doi.org/10.1016/S0142-9612(01)00204-6; PMID: 11771712
  • Sato K. Inorganic-organic interfacial interactions in hydroxyapatite mineralization processes. Top Curr Chem 2006; 270:127 - 53; http://dx.doi.org/10.1007/128_075
  • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001; 294:1684 - 8; http://dx.doi.org/10.1126/science.1063187; PMID: 11721046
  • Burger C, Zhou HW, Wang H, Sics I, Hsiao BS, Chu B, et al. Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 2008; 95:1985 - 92; http://dx.doi.org/10.1529/biophysj.107.128355; PMID: 18359799
  • Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 2010; 107:22425 - 9; http://dx.doi.org/10.1073/pnas.1009219107; PMID: 21127269
  • Xie B, Nancollas GH. How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci U S A 2010; 107:22369 - 70; http://dx.doi.org/10.1073/pnas.1017493108; PMID: 21169505
  • Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr.. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 2006; 39:434 - 42; http://dx.doi.org/10.1016/j.bone.2006.02.059; PMID: 16627026
  • George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008; 108:4670 - 93; http://dx.doi.org/10.1021/cr0782729; PMID: 18831570
  • Hall BK, ed. Cartilage: structure, function and biochemistry. Academic Press: New York USA 1983; 385.
  • Robins SP, Bilezikian JP, Seibel MJ. Dynamics of bone and cartilage metabolism. Academic Press: New York USA 1999; 672.
  • Hall BK, ed. Bones and cartilage: developmental skeletal biology. Academic Press: New York USA 2005; 792.
  • Marino AA, Becker RO. Evidence for epitaxy in the formation of collagen and apatite. Nature 1970; 226:652 - 3; http://dx.doi.org/10.1038/226652a0; PMID: 4315552
  • Jodaikin A, Weiner S, Talmon Y, Grossman E, Traub W. Mineral-organic matrix relations in tooth enamel. Int J Biol Macromol 1988; 10:349 - 52; http://dx.doi.org/10.1016/0141-8130(88)90027-X
  • Fincham AG, Moradian-Oldak J, Diekwisch TGH, Lyaruu DM, Wright JT, Bringas P Jr., et al. Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol 1995; 115:50 - 9; http://dx.doi.org/10.1006/jsbi.1995.1029; PMID: 7577231
  • LeGeros RZ, Pan CM, Suga S, Watabe N. Crystallo-chemical properties of apatite in atremate brachiopod shells. Calcif Tissue Int 1985; 37:98 - 100; http://dx.doi.org/10.1007/BF02557687; PMID: 3922605
  • Iijima M, Moriwaki Y. Orientation of apatite and organic matrix in Lingula unguis shell. Calcif Tissue Int 1990; 47:237 - 42; http://dx.doi.org/10.1007/BF02555925; PMID: 2242496
  • Williams A, Cusack M, Buckman JO, Stachel T. Siliceous tablets in the larval shells of apatitic discinid brachiopods. Science 1998; 279:2094 - 6; http://dx.doi.org/10.1126/science.279.5359.2094; PMID: 9516107
  • Rohanizadeh R, LeGeros RZ. Mineral phase in linguloid brachiopod shell: Lingula adamsi. Lethaia 2007; 40:61 - 8; http://dx.doi.org/10.1111/j.1502-3931.2006.00006.x
  • Nakano T, Ishimoto T, Lee JW, Umakoshi Y. Preferential orientation of biological apatite crystallite in original, regenerated and diseased cortical bones. J Ceram Soc Jpn 2008; 116:313 - 5; http://dx.doi.org/10.2109/jcersj2.116.313
  • Nakano T, Ishimoto T, Umakoshi Y, Tabata Y. Variation in bone quality during regenerative process. Mater Sci Forum 2007; 539-543:675 - 80; http://dx.doi.org/10.4028/www.scientific.net/MSF.539-543.675
  • Suvorova EI, Petrenko PP, Buffat PA. Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning 2007; 29:162 - 70; http://dx.doi.org/10.1002/sca.20058; PMID: 17598178
  • Stock SR, Blackburn D, Gradassi M, Simon HG. Bone formation during forelimb regeneration: a microtomography (microCT) analysis. Dev Dyn 2003; 226:410 - 7; http://dx.doi.org/10.1002/dvdy.10241; PMID: 12557219
  • Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289:1504 - 8; http://dx.doi.org/10.1126/science.289.5484.1504; PMID: 10968780
  • Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289:1508 - 14; http://dx.doi.org/10.1126/science.289.5484.1508; PMID: 10968781
  • Schilling AF, Filke S, Brink S, Korbmacher H, Amling M, Rueger JM. Osteoclasts and biomaterials. Eur J Trauma 2006; 32:107 - 13; http://dx.doi.org/10.1007/s00068-006-6043-1
  • Bonar LC, Shimizu M, Roberts JE, Griffin RG, Glimcher MJ. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study. J Bone Miner Res 1991; 6:1167 - 76; http://dx.doi.org/10.1002/jbmr.5650061105; PMID: 1666806
  • Biltz RM, Pellegrino ED. The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 1971; 7:259 - 63; http://dx.doi.org/10.1007/BF02062614; PMID: 5106030
  • Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 1991; 49:251 - 8; http://dx.doi.org/10.1007/BF02556214; PMID: 1760769
  • Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ. Hydroxyl groups in bone mineral. Bone 1995; 16:583 - 6; http://dx.doi.org/10.1016/8756-3282(95)00101-I; PMID: 7654473
  • Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, et al. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 2000; 26:599 - 602; http://dx.doi.org/10.1016/S8756-3282(00)00273-8; PMID: 10831931
  • Cho G, Wu Y, Ackerman JL. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 2003; 300:1123 - 7; http://dx.doi.org/10.1126/science.1078470; PMID: 12750514
  • Tung MS, Brown WE. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif Tissue Int 1983; 35:783 - 90; http://dx.doi.org/10.1007/BF02405124; PMID: 6652554
  • Tung MS, Brown WE. The role of octacalcium phosphate in subcutaneous heterotopic calcification. Calcif Tissue Int 1985; 37:329 - 31; http://dx.doi.org/10.1007/BF02554883; PMID: 3926285
  • Brown WE, Eidelman N, Tomazic BB. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res 1987; 1:306 - 13; PMID: 3504181
  • Siew C, Gruninger SE, Chow LC, Brown WE. Procedure for the study of acidic calcium phosphate precursor phases in enamel mineral formation. Calcif Tissue Int 1992; 50:144 - 8; http://dx.doi.org/10.1007/BF00298792; PMID: 1315187
  • Tseng YH, Mou CY, Chan JCC. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 2006; 128:6909 - 18; http://dx.doi.org/10.1021/ja060336u; PMID: 16719471
  • Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature 1965; 208:365 - 7; http://dx.doi.org/10.1038/208365a0; PMID: 5885449
  • Termine JD, Posner AS. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 1966; 153:1523 - 5; http://dx.doi.org/10.1126/science.153.3743.1523; PMID: 5917783
  • Termine JD, Posner AS. Infra-red determinaion of the percentage of crystallinity in apatitic calcium phosphates. Nature 1966; 211:268 - 70; http://dx.doi.org/10.1038/211268a0; PMID: 5965547
  • Harper RA, Posner AS. Measurement of non-crystalline calcium phosphate in bone mineral. Proc Soc Exp Biol Med 1966; 122:137 - 42; PMID: 5944858
  • Posner AS. Crystal chemistry of bone mineral. Physiol Rev 1969; 49:760 - 92; PMID: 4898602
  • Posner AS. Bone mineral on the molecular level. Fed Proc 1973; 32:1933 - 7; PMID: 4579969
  • Boskey AL, Posner AS. Formation of hydroxyapatite at low supersaturation. J Phys Chem 1976; 80:40 - 4; http://dx.doi.org/10.1021/j100542a009
  • Posner AS. “The chemistry of bone mineral”. Bull Hosp Joint Dis 1978; 39:126 - 44; PMID: 111746
  • Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH. Recent studies of bone mineral: is the amorphous calcium phosphate theory valid?. J Cryst Growth 1981; 53:100 - 19; http://dx.doi.org/10.1016/0022-0248(81)90058-0
  • Meyer JL, Eanes ED. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif Tissue Res 1978; 25:59 - 68; http://dx.doi.org/10.1007/BF02010752; PMID: 25699
  • Meyer JL, Eanes ED. A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif Tissue Res 1978; 25:209 - 16; http://dx.doi.org/10.1007/BF02010771; PMID: 30523
  • Politi Y, Arad T, Klein E, Weiner S, Addadi L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004; 306:1161 - 4; http://dx.doi.org/10.1126/science.1102289; PMID: 15539597
  • Weiner S, Sagi I, Addadi L. Structural biology. Choosing the crystallization path less traveled. Science 2005; 309:1027 - 8; http://dx.doi.org/10.1126/science.1114920; PMID: 16099970
  • Weiner S. Transient precursor strategy in mineral formation of bone. Bone 2006; 39:431 - 3; http://dx.doi.org/10.1016/j.bone.2006.02.058; PMID: 16581322
  • Pekounov Y, Petrov OE. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation. J Mater Sci Mater Med 2008; 19:753 - 9; http://dx.doi.org/10.1007/s10856-007-3085-7; PMID: 17619976
  • Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 2008; 108:4551 - 627; http://dx.doi.org/10.1021/cr800443h; PMID: 19006398
  • Weiner S, Mahamid J, Politi Y, Ma Y, Addadi L. Overview of the amorphous precursor phase strategy in biomineralization. Front Mater Sci China 2009; 3:104 8.
  • Mahamid J, Sharir A, Addadi L, Weiner S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc Natl Acad Sci U S A 2008; 105:12748 - 53; http://dx.doi.org/10.1073/pnas.0803354105; PMID: 18753619
  • Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A 2010; 107:6316 - 21; http://dx.doi.org/10.1073/pnas.0914218107; PMID: 20308589
  • Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 2010; 9:1004 - 9; http://dx.doi.org/10.1038/nmat2875; PMID: 20972429
  • Cölfen H. Biomineralization: A crystal-clear view. Nat Mater 2010; 9:960 - 1; http://dx.doi.org/10.1038/nmat2911; PMID: 21102512
  • Sahar ND, Hong SI, Kohn DH. Micro- and nano-structural analyses of damage in bone. Micron 2005; 36:617 - 29; http://dx.doi.org/10.1016/j.micron.2005.07.006; PMID: 16169739
  • Bilezikian JP, Raisz LG, Martin TJ. Principles of Bone Biology. Academic Press: New York USA 2008; 3:1900.
  • Burnell JM, Teubner EJ, Miller AG. Normal maturational changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int 1980; 31:13 - 9; http://dx.doi.org/10.1007/BF02407162; PMID: 6770970
  • Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 1986; 206:262 - 6; http://dx.doi.org/10.1016/0014-5793(86)80993-0; PMID: 3019771
  • Hanschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 1995; 16:Suppl 355S - 63S; PMID: 7626325
  • Pellegrino ED, Biltz RM. Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calcif Tissue Res 1972; 10:128 - 35; http://dx.doi.org/10.1007/BF02012542; PMID: 4343465
  • Legros R, Balmain N, Bonel G. Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 1987; 41:137 - 44; http://dx.doi.org/10.1007/BF02563793; PMID: 3117340
  • Rey C, Hina A, Tofighi A, Glimcher MJ. Maturation of poorly crystalline apatites: chemical and structural aspect in vivo and in vitro behavior. Cell Mater 1995; 5:345 - 56
  • Verdelis K, Lukashova L, Wright JT, Mendelsohn R, Peterson MGE, Doty S, et al. Maturational changes in dentin mineral properties. Bone 2007; 40:1399 - 407; http://dx.doi.org/10.1016/j.bone.2006.12.061; PMID: 17289453
  • Yerramshetty JS, Lind C, Akkus O. The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 2006; 39:1236 - 43; http://dx.doi.org/10.1016/j.bone.2006.06.002; PMID: 16860007
  • Kuhn LT, Grynpas MD, Rey CC, Wu Y, Ackerman JL, Glimcher MJ. A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages. Calcif Tissue Int 2008; 83:146 - 54; http://dx.doi.org/10.1007/s00223-008-9164-z; PMID: 18685796
  • Donnelly E, Boskey AL, Baker SP, van der Meulen MC. Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 2010; 92:1048 - 56; PMID: 19301272
  • Lowenstam HA. Minerals formed by organisms. Science 1981; 211:1126 - 31; http://dx.doi.org/10.1126/science.7008198; PMID: 7008198
  • Lowenstam HA, Weiner S. Mineralization by organisms and the evolution of biomineralization. In: Biomineralization and biological metal accumulation. Westbroek P, de Jong EW, (Eds.) D Reidel Pub Co Dordrecht, Holland 1983; 191-203.
  • Plate U, Tkotz T, Wiesmann HP, Stratmann U, Joos U, Höhling HJ. Early mineralization of matrix vesicles in the epiphyseal growth plate. J Microsc 1996; 183:102 - 7; http://dx.doi.org/10.1046/j.1365-2818.1996.67430.x; PMID: 8760406
  • Stratmann U, Schaarschmidt K, Wiesmann HP, Plate U, Höhling HJ. Mineralization during matrix-vesicle-mediated mantle dentine formation in molars of albino rats: a microanalytical and ultrastructural study. Cell Tissue Res 1996; 284:223 - 30; http://dx.doi.org/10.1007/s004410050582; PMID: 8625389
  • Jahnen-Dechent W, Schinke T, Trindl A, Müller-Esterl W, Sablitzky F, Kaiser S, et al. Cloning and targeted deletion of the mouse fetuin gene. J Biol Chem 1997; 272:31496 - 503; http://dx.doi.org/10.1074/jbc.272.50.31496; PMID: 9395485
  • Schinke T, McKee MD, Karsenty G. Extracellular matrix calcification: where is the action?. Nat Genet 1999; 21:150 - 1; http://dx.doi.org/10.1038/5928; PMID: 9988260
  • Jahnen-Dechent W, Schäfer G, Heiss A, Grötzinger J. Systemic inhibition of spontaneous calcification by the serum protein a2-HS glycoprotein/fetuin. Z Kardiol 2001; 90:4756; http://dx.doi.org/10.1007/s003920170042
  • Avery JK. Oral development and histology. Thieme Medical Publishers Inc.: New York USA 2001; 3:435.
  • ten Cate AR. Oral histology: development, structure and function. Mosby-Year Book. Saint Louis USA 1998; 5:497
  • Xue J, Zhang L, Zou L, Liao Y, Li J, Xiao L, et al. High-resolution X-ray microdiffraction analysis of natural teeth. J Synchrotron Radiat 2008; 15:235 - 8; http://dx.doi.org/10.1107/S0909049508003397; PMID: 18421147
  • Gaft M, Shoval S, Panczer G, Nathan Y, Champagnon B, Garapon C. Luminescence of uranium and rare-earth elements in apatite of fossil fish teeth. Palaeogeogr. Palaeocl 1996; 126:187 - 93; http://dx.doi.org/10.1016/S0031-0182(96)00079-X
  • Huang CM, Zhang Q, Bai S, Wang CS. [FTIR and XRD analysis of hydroxyapatite from fossil human and animal teeth in Jinsha Relict, Chengdu]. Guang Pu Xue Yu Guang Pu Fen Xi 2007; 27:2448 - 52; PMID: 18330282
  • Ho SP, Yu B, Yun W, Marshall GW, Ryder MI, Marshall SJ. Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. Acta Biomater 2009; 5:707 - 18; http://dx.doi.org/10.1016/j.actbio.2008.08.013; PMID: 18829402
  • Bosshardt DD, Selvig KA. Dental cementum: the dynamic tissue covering of the root. Periodontol 2000 1997; 13:41 - 75; http://dx.doi.org/10.1111/j.1600-0757.1997.tb00095.x; PMID: 9567923
  • Ho SP, Senkyrikova P, Marshall GW, Yun W, Wang Y, Karan K, et al. Structure, chemical composition and mechanical properties of coronal cementum in human deciduous molars. Dent Mater 2009; 25:1195 - 204; http://dx.doi.org/10.1016/j.dental.2009.04.005; PMID: 19464049
  • Yamamoto T, Li M, Liu Z, Guo Y, Hasegawa T, Masuki H, et al. Histological review of the human cellular cementum with special reference to an alternating lamellar pattern. Odontology 2010; 98:102 - 9; http://dx.doi.org/10.1007/s10266-010-0134-3; PMID: 20652787
  • Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 2006; 85:775 - 93; http://dx.doi.org/10.1177/154405910608500902; PMID: 16931858
  • Vieira A, Hancock R, Limeback H, Schwartz M, Grynpas MD. How does fluoride concentration in the tooth affect apatite crystal size?. J Dent Res 2003; 82:909 - 13; http://dx.doi.org/10.1177/154405910308201112; PMID: 14578504
  • Cui FZ, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J Tissue Eng Regen Med 2007; 1:185 - 91; http://dx.doi.org/10.1002/term.21; PMID: 18038410
  • Jandt KD. Probing the future in functional soft drinks on the nanometre scale—towards tooth friendly soft drinks. Trends Food Sci Technol 2006; 17:263 - 71; http://dx.doi.org/10.1016/j.tifs.2005.11.016
  • Chen H, Chen Y, Orr BG, Holl MM, Majoros I, Clarkson BH. Nanoscale probing of the enamel nanorod surface using polyamidoamine dendrimers. Langmuir 2004; 20:4168 - 71; http://dx.doi.org/10.1021/la0303005; PMID: 15969412
  • Rönnholm E. The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res 1962; 6:249 - 303; http://dx.doi.org/10.1016/S0022-5320(62)80036-7; PMID: 14493689
  • Nylen MU, Eanes ED, Omnell KA. Crystal growth in rat enamel. J Cell Biol 1963; 18:109 - 23; http://dx.doi.org/10.1083/jcb.18.1.109; PMID: 13939321
  • Miake Y, Shimoda S, Fukae M, Aoba T. Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization. Calcif Tissue Int 1993; 53:249 - 56; http://dx.doi.org/10.1007/BF01320910; PMID: 8275353
  • Daculsi G, Menanteau J, Kerebel LM, Mitre D. Length and shape of enamel crystals. Calcif Tissue Int 1984; 36:550 - 5; http://dx.doi.org/10.1007/BF02405364; PMID: 6441627
  • Jodaikin A, Weiner S, Traub W. Enamel rod relations in the developing rat incisor. J Ultrastruct Res 1984; 89:324 - 32; http://dx.doi.org/10.1016/S0022-5320(84)80048-9; PMID: 6544893
  • Brès EF, Hutchison JL. Surface structure study of biological calcium phosphate apatite crystals from human tooth enamel. J Biomed Mater Res 2002; 63:433 - 40; http://dx.doi.org/10.1002/jbm.10254; PMID: 12115752
  • Schroeder L, Frank RM. High-resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res 1985; 242:449 - 51; http://dx.doi.org/10.1007/BF00214561; PMID: 4053174
  • Brès EF, Voegel JC, Frank RM. High-resolution electron microscopy of human enamel crystals. J Microsc 1990; 160:183 - 201; http://dx.doi.org/10.1111/j.1365-2818.1990.tb03057.x; PMID: 1963451
  • Robinson C, Connell S, Kirkham J, Shorea R, Smith A. Dental enamel—a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem 2004; 14:2242 - 8; http://dx.doi.org/10.1039/b401154f
  • Warf RD, Watson RR. Calcium phosphate—nutrition in prevention of early childhood dental caries. In: Wild-type food in health promotion and disease prevention: the Columbus concept. de Meester F, Watson RR, Eds. Humana Press: Totowa NJ, USA 2008; 343-53.
  • Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 1995; 6:84 - 108; http://dx.doi.org/10.1177/10454411950060020701; PMID: 7548623
  • Diekwisch TG, Berman BJ, Gentner S, Slavkin HC. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 1995; 279:149 - 67; http://dx.doi.org/10.1007/BF00300701; PMID: 7895256
  • Aoba T. Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 1996; 245:208 - 18; http://dx.doi.org/10.1002/(SICI)1097-0185(199606)245:2<208::AID-AR8>3.0.CO;2-S; PMID: 8769664
  • Beniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J Struct Biol 2009; 166:133 - 43; http://dx.doi.org/10.1016/j.jsb.2009.02.001; PMID: 19217943
  • Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998; 9:128 - 61; http://dx.doi.org/10.1177/10454411980090020101; PMID: 9603233
  • Sydney-Zax M, Mayer I, Deutsch D. Carbonate content in developing human and bovine enamel. J Dent Res 1991; 70:913 - 6; http://dx.doi.org/10.1177/00220345910700051001; PMID: 2022774
  • Rey C, Renugopalakrishnan V, Shimizu M, Collins B, Glimcher MJ. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int 1991; 49:259 - 68; http://dx.doi.org/10.1007/BF02556215; PMID: 1760770
  • Takagi T, Ogasawara T, Tagami J, Akao M, Kuboki Y, Nagai N, et al. pH and carbonate levels in developing enamel. Connect Tissue Res 1998; 38:181 - 7, discussion 201-5; http://dx.doi.org/10.3109/03008209809017035; PMID: 11063026
  • Lowenstam HA, Weiner S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science 1985; 227:51 - 3; http://dx.doi.org/10.1126/science.227.4682.51; PMID: 17810022
  • Selvig KA. Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tissue Res 1970; 6:227 - 38; http://dx.doi.org/10.1007/BF02196203; PMID: 5500676
  • Selvig KA. Electron microscopy of dental enamel: analysis of crystal lattice images. Z Zellforsch Mikrosk Anat 1973; 137:271 - 80; http://dx.doi.org/10.1007/BF00307434; PMID: 4692958
  • Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM. Human amelogenesis: high resolution electron microscopy of nanometer-sized particles. Cell Tissue Res 1993; 273:175 - 82; http://dx.doi.org/10.1007/BF00304624; PMID: 8395984
  • Cuisinier FJG, Steuer P, Brisson A, Voegel JC. High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites. J Cryst Growth 1995; 156:443 - 53; http://dx.doi.org/10.1016/0022-0248(95)00237-5
  • Houllé P, Voegel JC, Schultz P, Steuer P, Cuisinier FJG. High resolution electron microscopy: structure and growth mechanisms of human dentin crystals. J Dent Res 1997; 76:895 - 904; http://dx.doi.org/10.1177/00220345970760041101; PMID: 9126186
  • Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 1993; 365:499 - 505; http://dx.doi.org/10.1038/365499a0
  • Kirkham J, Zhang J, Brookes SJ, Shore RC, Wood SR, Smith DA, et al. Evidence for charge domains on developing enamel crystal surfaces. J Dent Res 2000; 79:1943 - 7; http://dx.doi.org/10.1177/00220345000790120401; PMID: 11201043
  • Smith TM, Tafforeau P. New visions of dental tissue research: tooth development, chemistry and structure. Evol Anthropol 2008; 17:213 - 26; http://dx.doi.org/10.1002/evan.20176
  • Warshawsky H, Nanci A. Stereo electron microscopy of enamel crystallites. J Dent Res 1982; 61:Spec No 1504 - 14; PMID: 6958709
  • Warshawsky H. Organization of crystals in enamel. Anat Rec 1989; 224:242 - 62; http://dx.doi.org/10.1002/ar.1092240214; PMID: 2672889
  • Xu C, Yao X, Walker MP, Wang Y. Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location. Calcif Tissue Int 2009; 84:221 - 8; http://dx.doi.org/10.1007/s00223-008-9212-8; PMID: 19152060
  • Arsenault AL, Robinson BW. The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tissue Int 1989; 45:111 - 21; http://dx.doi.org/10.1007/BF02561410; PMID: 2505895
  • Hayashi Y. High resolution electron microscopy in the dentino-enamel junction. J Electron Microsc (Tokyo) 1992; 41:387 - 91; PMID: 1487691
  • Hayashi Y. High resolution electron microscopic study on the human dentine crystal. J Electron Microsc (Tokyo) 1993; 42:141 - 6; PMID: 8397271
  • Bodier-Houllé P, Steuer P, Meyer JM, Bigeard L, Cuisinier FJG. High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction. Cell Tissue Res 2000; 301:389 - 95; http://dx.doi.org/10.1007/s004410000241; PMID: 10994784
  • Takano Y, Hanaizumi Y, Ohshima H. Occurrence of amorphous and crystalline mineral deposits at the epithelial-mesenchymal interface of incisors in the calcium-loaded rat: implication of novel calcium binding domains. Anat Rec 1996; 245:174 - 85; http://dx.doi.org/10.1002/(SICI)1097-0185(199606)245:2<174::AID-AR6>3.0.CO;2-X; PMID: 8769662
  • Dong W, Warshawsky H. Lattice fringe continuity in the absence of crystal continuity in enamel. Adv Dent Res 1996; 10:232 - 7; http://dx.doi.org/10.1177/08959374960100021901; PMID: 9206342
  • Wang R, Hu Y, Ng C. Microstructure and interfacial fracture at the cementum-enamel junctions in equine and bovine teeth. J Mater Res 2006; 21:2146 - 55; http://dx.doi.org/10.1557/jmr.2006.0265
  • Ho SP, Goodis H, Balooch M, Nonomura G, Marshall SJ, Marshall GW. The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue. Biomaterials 2004; 25:4847 - 57; http://dx.doi.org/10.1016/j.biomaterials.2003.11.047; PMID: 15120532
  • Paine ML, White SN, Luo W, Fong H, Sarikaya M, Snead ML. Regulated gene expression dictates enamel structure and tooth function. Matrix Biol 2001; 20:273 - 92; http://dx.doi.org/10.1016/S0945-053X(01)00153-6; PMID: 11566262
  • Finke M, Parker DM, Jandt KD. Influence of soft drinks on the thickness and morphology of in situ acquired pellicle layer on enamel. J Colloid Interface Sci 2002; 251:263 - 70; http://dx.doi.org/10.1006/jcis.2002.8428; PMID: 16290729
  • Barbour ME, Parker DM, Jandt KD. Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: a nanoindentation study. J Colloid Interface Sci 2003; 265:9 - 14; http://dx.doi.org/10.1016/S0021-9797(03)00087-0; PMID: 12927157
  • Lippert F, Parker DM, Jandt KD. Susceptibility of deciduous and permanent enamel to dietary acid-induced erosion studied with atomic force microscopy nanoindentation. Eur J Oral Sci 2004; 112:61 - 6; http://dx.doi.org/10.1111/j.0909-8836.2004.00095.x; PMID: 14871195
  • Barbour ME, Parker DM, Allen GC, Jandt KD. Human enamel erosion in constant composition citric acid solutions as a function of degree of saturation with respect to hydroxyapatite. J Oral Rehabil 2005; 32:16 - 21; http://dx.doi.org/10.1111/j.1365-2842.2004.01365.x; PMID: 15634296
  • LeGeros RZ. Calcium phosphates in demineralization and remineralization processes. J Clin Dent 1999; 10:65 - 73
  • Walker G, Cai F, Shen P, Reynolds C, Ward B, Fone C, et al. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J Dairy Res 2006; 73:74 - 8; http://dx.doi.org/10.1017/S0022029905001482; PMID: 16433964
  • Lippert F, Parker DM, Jandt KD. In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surf Sci 2004; 553:105 - 14; http://dx.doi.org/10.1016/j.susc.2004.01.040
  • Lippert F, Parker DM, Jandt KD. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci 2004; 280:442 - 8; http://dx.doi.org/10.1016/j.jcis.2004.08.016; PMID: 15533417
  • Lippert F, Parker DM, Jandt KD. Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res 2004; 38:464 - 72; http://dx.doi.org/10.1159/000079628; PMID: 15316191
  • Hannig C, Hannig M. Natural enamel wear--a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair?. Med Hypotheses 2010; 74:670 - 2; http://dx.doi.org/10.1016/j.mehy.2009.11.007; PMID: 19962245
  • Busch S. Regeneration of human tooth enamel. Angew Chew Int Ed 2004; 43:1428-31.
  • Onuma K, Yamagishi K, Oyane A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J Cryst Growth 2005; 282:199 - 207; http://dx.doi.org/10.1016/j.jcrysgro.2005.04.085
  • He L, Feng Z. Preparation and characterization of dicalcium phosphate dihydrate coating on enamel. Mater Lett 2007; 61:3923 - 6; http://dx.doi.org/10.1016/j.matlet.2006.12.059
  • Li L, Pan H, Tao J, Xu X, Mao C, Gu X, et al. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem 2008; 18:4079 - 84; http://dx.doi.org/10.1039/b806090h
  • Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EC. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res 2008; 42:88 - 97; http://dx.doi.org/10.1159/000113161; PMID: 18204252
  • Wang X, Xia C, Zhang Z, Deng X, Wei S, Zheng G, et al. Direct growth of human enamel-like calcium phosphate microstructures on human tooth. J Nanosci Nanotechnol 2009; 9:1361 - 4; http://dx.doi.org/10.1166/jnn.2009.C157; PMID: 19441525
  • Roveri N, Battistella E, Bianchi CL, Foltran I, Foresti E, Iafisco M, et al. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater 2009; •••:746383
  • Roveri N, Foresti E, Lelli M, Lesci IG. Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride. Recent Patents on Biomed. Eng 2009; 2:197 - 215
  • Yin Y, Yun S, Fang J, Chen H. Chemical regeneration of human tooth enamel under near-physiological conditions. Chem Commun (Camb) 2009; 21:5892 - 4; http://dx.doi.org/10.1039/b911407f; PMID: 19787132
  • Peters MC, Bresciani E, Barata TJE, Fagundes TC, Navarro RL, Navarro MFL, et al. In vivo dentin remineralization by calcium-phosphate cement. J Dent Res 2010; 89:286 - 91; http://dx.doi.org/10.1177/0022034509360155; PMID: 20139340
  • Orsini G, Procaccini M, Manzoli L, Giuliodori F, Lorenzini A, Putignano A. A double-blind randomized-controlled trial comparing the desensitizing efficacy of a new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice. J Clin Periodontol 2010; 37:510 - 7; http://dx.doi.org/10.1111/j.1600-051X.2010.01558.x; PMID: 20507374
  • Uysal T, Amasyali M, Koyuturk AE, Ozcan S, Sagdic D. Amorphous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets?. Aust Orthod J 2010; 26:10 - 5; PMID: 20575193
  • Sá Roriz Fonteles C, Zero DT, Moss ME, Fu J. Fluoride concentrations in enamel and dentin of primary teeth after pre- and postnatal fluoride exposure. Caries Res 2005; 39:505 - 8; http://dx.doi.org/10.1159/000088187; PMID: 16251796
  • Wiegand A, Krieger C, Attin R, Hellwig E, Attin T. Fluoride uptake and resistance to further demineralisation of demineralised enamel after application of differently concentrated acidulated sodium fluoride gels. Clin Oral Investig 2005; 9:52 - 7; http://dx.doi.org/10.1007/s00784-005-0306-7; PMID: 15726445
  • Waszkiel D, Opalko K, Lagocka R, Chlubek D. Fluoride and magnesium content in superficial enamel layers of teeth with erosions. Fluoride 2004; 37:271 - 7
  • Vieira APGF, Hancock R, Dumitriu M, Schwartz M, Limeback H, Grynpas MD. How does fluoride affect dentin microhardness and mineralization?. J Dent Res 2005; 84:951 - 7; http://dx.doi.org/10.1177/154405910508401015; PMID: 16183797
  • Driessens FCM. Relation between apatite solubility and anti-cariogenic effect of fluoride. Nature 1973; 243:420 - 1; http://dx.doi.org/10.1038/243420a0; PMID: 4743638
  • Moreno EC, Kresak M, Zahradnik RT. Fluoridated hydroxyapatite solubility and caries formation. Nature 1974; 247:64 - 5; http://dx.doi.org/10.1038/247064a0; PMID: 4462607
  • McClendon JF. Fluorapatite and teeth. Science 1966; 151:151; http://dx.doi.org/10.1126/science.151.3707.151-b; PMID: 17746322
  • Wang X, Klocke A, Mihailova B, Tosheva L, Bismayer U. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions. J Phys Chem B 2008; 112:8840 - 8; http://dx.doi.org/10.1021/jp802492d; PMID: 18588337
  • Kierdorf U, Kierdorf H. Deer antlers - a model of mammalian appendage regeneration: an extensive review. Gerontology 2011; 57:53 - 65; http://dx.doi.org/10.1159/000300565; PMID: 20332600
  • Price J, Faucheux C, Allen S. Deer antlers as a model of Mammalian regeneration. Curr Top Dev Biol 2005; 67:1 - 48; http://dx.doi.org/10.1016/S0070-2153(05)67001-9; PMID: 15949530
  • Yue Z, Deng X, Feng H. The mechanisms of deer antlers development and regeneration. J Econ Animal 2005; 9:46 - 9
  • Zhao L, Yue Z, Zhang X, Deng X. The deer antlers endochondral ossification and its regulation mechanisms. J Econ Animal 2006; 10:238 - 41
  • Landete-Castillejos T, Garcia A, Gallego L. Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus). Bone 2007; 40:230 - 5; http://dx.doi.org/10.1016/j.bone.2006.07.009; PMID: 16949898
  • Huxley J. The relative size of antlers of deer. Proc Zool Soc Lond 1931; 72:819 - 64
  • Kierdorf U, Li C, Price JS. Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 2009; 20:535 - 42; http://dx.doi.org/10.1016/j.semcdb.2008.11.011; PMID: 19084608
  • Chen PY, Stokes AG, McKittrick J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater 2009; 5:693 - 706; http://dx.doi.org/10.1016/j.actbio.2008.09.011; PMID: 18951859
  • Zioupos P, Wang XT, Currey JD. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech 1996; 29:989 - 1002; http://dx.doi.org/10.1016/0021-9290(96)00001-2; PMID: 8817365
  • Landete-Castillejos T, Currey JD, Estevez JA, Gaspar-López E, Garcia A, Gallego L. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties. Bone 2007; 41:794 - 803; http://dx.doi.org/10.1016/j.bone.2007.07.013; PMID: 17822969
  • Evans LA, McCutcheon AL, Dennis GR, Mulley RC, Wilson MA. Pore size analysis of fallow deer (Dama dama) antler bone. J Mater Sci 2005; 40:5733 - 9; http://dx.doi.org/10.1007/s10853-005-1118-5
  • Akhtar R, Daymond MR, Almer JD, Mummery PM. Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction. Acta Biomater 2008; 4:1677 - 87; http://dx.doi.org/10.1016/j.actbio.2008.05.008; PMID: 18555757
  • Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, et al. The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 2009; 212:3985 - 93; http://dx.doi.org/10.1242/jeb.032292; PMID: 19946076
  • Goss RJ. Deer antlers regeneration, function and evolution. Academic Press: New York USA 1983; 316.
  • Bubenik GA, Bubenik AB, eds. Horns, pronghorns and antlers: evolution, morphology, physiology and social significance. Springer: New York USA 1990; 562.
  • Kierdorf U, Kierdorf H. Antlers as biomonitors of environmental pollution by lead and fluoride: a review. Eur J Wildl Res 2005; 51:137 - 50; http://dx.doi.org/10.1007/s10344-005-0093-0
  • Barling PM, Gupta DK, Lim CEL. Involvement of phosphodiesterase I in mineralization: histochemical studies using antler from red deer (Cervus elaphus) as a model. Calcif Tissue Int 1999; 65:384 - 9; http://dx.doi.org/10.1007/s002239900718; PMID: 10541765
  • Barling PM, Chong KW. The involvement of phosphohydrolases in mineralization: studies on enzymatic activities extracted from red deer antler. Calcif Tissue Int 1999; 65:232 - 6; http://dx.doi.org/10.1007/s002239900689; PMID: 10441657
  • Kierdorf U, Kierdorf H. The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): a historical biomonitoring study. Fluoride 2000; 33:92 - 4
  • Pathak NN, Pattanaik AK, Patra RC, Arora BM. Mineral composition of antlers of three deer species reared in captivity. Small Rumin Res 2001; 42:61 - 5; http://dx.doi.org/10.1016/S0921-4488(01)00218-8
  • Yuxia Y, Rui D, Wang Y, Wang S. Calcium and phosphors contents of three-branched and two-branched antler and ossificational antler from sika deer. J Econ Animal 2002; 6:6 - 8
  • Kim HY, Rhyu MR. Sectional composition of minerals in domestic deer antler. Korean J. Food Sci. Technol 2000; 32:31 - 6
  • Li C, Suttie JM, Clark DE. Histological examination of antler regeneration in red deer (Cervus elaphus). Anat Rec A Discov Mol Cell Evol Biol 2005; 282:163 - 74; http://dx.doi.org/10.1002/ar.a.20148; PMID: 15641024
  • Meister W. Changes in biological structure of the long bones of white-tailed deer during the growth of antlers. Anat Rec 1956; 124:709 - 21; http://dx.doi.org/10.1002/ar.1091240407; PMID: 13327279
  • Muir PD, Sykes AR, Barrell GK. Calcium metabolism in red deer (Cervus elaphus) offered herbages during antlerogenesis: kinetic and stable balance studies. J Agric Sci Camb 1987; 109:357 - 64; http://dx.doi.org/10.1017/S0021859600080783
  • Baxter BJ, Andrews RN, Barrell GK. Bone turnover associated with antler growth in red deer (Cervus elaphus). Anat Rec 1999; 256:14 - 9; http://dx.doi.org/10.1002/(SICI)1097-0185(19990901)256:1<14::AID-AR3>3.0.CO;2-A; PMID: 10456981
  • Bubenik GA, Bubenik PG. Palmated antlers of moose may serve as a parabolic reflector of sounds. Eur J Wildl Res 2008; 54:533 - 5; http://dx.doi.org/10.1007/s10344-007-0165-4
  • Landete-Castillejos T, Estevez JA, Martínez A, Ceacero F, Garcia A, Gallego L. Does chemical composition of antler bone reflect the physiological effort made to grow it?. Bone 2007; 40:1095 - 102; http://dx.doi.org/10.1016/j.bone.2006.11.022; PMID: 17239669
  • Baciut M, Baciut G, Simon V, Albon C, Coman V, Prodan P, et al. Investigation of deer antler as a potential bone regenerating biomaterial. J Optoelectron Adv Mater 2007; 9:2547 - 50
  • Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 1998; 31:607 - 17; http://dx.doi.org/10.1053/ajkd.1998.v31.pm9531176; PMID: 9531176
  • Kazama JJ, Amizuka N, Fukagawa M. Ectopic calcification as abnormal biomineralization. Ther Apher Dial 2006; 10:34 - 8; http://dx.doi.org/10.1111/j.1744-9987.2006.00438.x
  • Mackarell WW, Moore B, Thomas WT. On the presence of insoluble salts of calcium (oxalate and phosphate) in renal calculi in large amount in a preponderating number of cases, and the bearing of this finding upon calcium metabolism in gout and allied conditions. Biochem J 1911; 5:161 - 80; PMID: 16742149
  • Frondel C, Prien EL. Carbonate-apatite and hydroxylapatite in urinary calculi. Science 1942; 95:431; http://dx.doi.org/10.1126/science.95.2469.431; PMID: 17842588
  • Frondel C, Prien EL. Deposition of calcium phosphates accompanying senile degeneration and disease. Science 1946; 103:326; http://dx.doi.org/10.1126/science.103.2672.326
  • Brancaccio D, Cozzolino M. The mechanism of calcium deposition in soft tissues. Contrib Nephrol 2005; 149:279 - 86; http://dx.doi.org/10.1159/000085689; PMID: 15876851
  • Goff AK, Reichard R. A soft-tissue calcification: differential diagnosis and pathogenesis. J Forensic Sci 2006; 51:493 - 7; http://dx.doi.org/10.1111/j.1556-4029.2006.00109.x; PMID: 16696695
  • Bittmann S, Günther MW, Ulus H. Tumoral calcinosis of the gluteal region in a child: case report with overview of different soft-tissue calcifications. J Pediatr Surg 2003; 38:E4 - 7; http://dx.doi.org/10.1016/S0022-3468(03)00289-6; PMID: 12891514
  • Molloy ES, McCarthy GM. Basic calcium phosphate crystals: pathways to joint degeneration. Curr Opin Rheumatol 2006; 18:187 - 92; http://dx.doi.org/10.1097/01.bor.0000209433.43978.a8; PMID: 16462527
  • Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol 2004; 15:2959 - 64; http://dx.doi.org/10.1097/01.ASN.0000145894.57533.C4; PMID: 15579497
  • Fukagawa M, Kazama JJ, Fukagawa M. The making of a bone in blood vessels: from the soft shell to the hard bone. Kidney Int 2007; 72:533 - 4; http://dx.doi.org/10.1038/sj.ki.5002440; PMID: 17713562
  • Achilles W. Crystallization in gel matrices: a new experimental model of calcium stone formation. Contrib Nephrol 1987; 58:59 - 64; PMID: 3691148
  • Achilles W, Jöckel U, Schaper A, Burk M, Riedmiller H. In vitro formation of “urinary stones”: generation of spherulites of calcium phosphate in gel and overgrowth with calcium oxalate using a new flow model of crystallization. Scanning Microsc 1995; 9:577 - 85, discussion 585-6; PMID: 8714750
  • Ross AE, Handa S, Lingeman JE, Matlaga BR. Kidney stones during pregnancy: an investigation into stone composition. Urol Res 2008; 36:99 - 102; http://dx.doi.org/10.1007/s00240-008-0138-4; PMID: 18470509
  • Ringdén I, Tiselius HG. Composition and clinically determined hardness of urinary tract stones. Scand J Urol Nephrol 2007; 41:316 - 23; http://dx.doi.org/10.1080/00365590601154551; PMID: 17763224
  • Jensen AT, Rowles SL. Magnesium whitlockite, a major constituent of dental calculus. Acta Odontol Scand 1957; 16:121 - 39; http://dx.doi.org/10.3109/00016355709041096
  • Le May O, Kaqueler JC, Kodaka T. Electron probe micro-analysis of human dental pulp stones. Scanning Microsc 1993; 7:267 - 71, discussion 271-2; PMID: 8316798
  • Kodaka T, Hirayama A, Mori R, Sano T. Spherulitic brushite stone in the dental pulp of a cow. J Electron Microsc (Tokyo) 1998; 47:57 - 65; PMID: 9602527
  • Hayashizaki J, Ban S, Nakagaki H, Okumura A, Yoshii S, Robinson C. Site specific mineral composition and microstructure of human supra-gingival dental calculus. Arch Oral Biol 2008; 53:168 - 74; http://dx.doi.org/10.1016/j.archoralbio.2007.09.003; PMID: 17964529
  • Zelentsov EL, Moroz TN, Kolmogorov YP, Tolmachev VE, Dragun GN, Palchik NA, et al. The elemental SRXRF analysis and mineral composition of human salivary stones. NIM A 2001; 470:417 - 21; http://dx.doi.org/10.1016/S0168-9002(01)01088-9
  • Ortlepp JR, Schmitz F, Mevissen V, Weiss S, Huster J, Dronskowski R, et al. The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. Eur Heart J 2004; 25:514 - 22; http://dx.doi.org/10.1016/j.ehj.2003.09.006; PMID: 15039132
  • Kim KM. Cellular mechanism of calcification and its prevention in glutaraldehyde treated vascular tissue. Z Kardiol 2001; 90:Suppl 3 99 - 105; http://dx.doi.org/10.1007/s003920170050; PMID: 11374041
  • Tomazic BB. Physiochemical principles of cardiovascular calcification. Z Kardiol 2001; 90:Suppl 3 68 - 80; http://dx.doi.org/10.1007/s003920170046; PMID: 11374037
  • Marra SP, Daghlian CP, Fillinger MF, Kennedy FE. Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater 2006; 2:515 - 20; http://dx.doi.org/10.1016/j.actbio.2006.05.003; PMID: 16839827
  • Fitzpatrick LA, Turner RT, Ritman ER. Endochondral bone formation in the heart: a possible mechanism of coronary calcification. Endocrinology 2003; 144:2214 - 9; http://dx.doi.org/10.1210/en.2002-0170; PMID: 12746277
  • Suvorova EI, Buffat PA. Pathological mineralization of cardiac valves: causes and mechanism. J Long Term Eff Med Implants 2005; 15:355 - 68; http://dx.doi.org/10.1615/JLongTermEffMedImplants.v15.i4.30; PMID: 16022646
  • Giachelli CM. Ectopic calcification: new concepts in cellular regulation. Z Kardiol 2001; 90:Suppl 3 31 - 7; http://dx.doi.org/10.1007/s003920170039; PMID: 11374030
  • Glasmacher B, Nellen E, Reul H, Rau G. In vitro hemocompatibility testing of new materials for mechanical heart valves. Materialwiss Werkstofftech 1999; 30:806 - 8; http://dx.doi.org/10.1002/(SICI)1521-4052(199912)30:12<806::AID-MAWE806>3.0.CO;2-F
  • Deiwick M, Glasmacher B, Pettenazzo E, Hammel D, Castellón W, Thiene G, et al. Primary tissue failure of bioprostheses: new evidence from in vitro tests. Thorac Cardiovasc Surg 2001; 49:78 - 83; http://dx.doi.org/10.1055/s-2001-11711; PMID: 11339456
  • Pettenazzo E, Deiwick M, Thiene G, Molin G, Glasmacher B, Martignago F, et al. Dynamic in vitro calcification of bioprosthetic porcine valves: evidence of apatite crystallization. J Thorac Cardiovasc Surg 2001; 121:500 - 9; http://dx.doi.org/10.1067/mtc.2001.112464; PMID: 11241085
  • Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 2005; 79:1072 - 80; http://dx.doi.org/10.1016/j.athoracsur.2004.06.033; PMID: 15734452
  • Sensui K, Saitoh S, Kametani K, Makino K, Ohira M, Kimura T, et al. Property analysis of ectopic calcification in the carpal tunnel identification of apatite crystals: a case report. Arch Orthop Trauma Surg 2003; 123:442 - 5; http://dx.doi.org/10.1007/s00402-003-0574-0; PMID: 14574607
  • Kim CJ, Choi SK. Analysis of aqueous humor calcium and phosphate from cataract eyes with and without diabetes mellitus. Korean J Ophthalmol 2007; 21:90 - 4; http://dx.doi.org/10.3341/kjo.2007.21.2.90; PMID: 17592239
  • Mccarty DJ Jr., Hogan JM, Gatter RA, Grossman M. Studies on pathological calcifications in human cartilage. I. Prevalence and types of crystal deposits in the menisci of two hundred fifteen cadavera. J Bone Joint Surg Am 1966; 48:309 - 25; PMID: 5932916
  • Laird DF, Mucalo MR, Yokogawa Y. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis. J Colloid Interface Sci 2006; 295:348 - 63; http://dx.doi.org/10.1016/j.jcis.2005.09.013; PMID: 16229855
  • Stock SR, Ignatiev K, Lee PL, Abbott K, Pachman LM. Pathological calcification in juvenile dermatomyositis (JDM): microCT and synchrotron x-ray diffraction reveal hydroxyapatite with varied microstructures. Connect Tissue Res 2004; 45:248 - 56; http://dx.doi.org/10.1080/03008200490903066; PMID: 15763934
  • Pachman LM, Boskey AL. Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis. Curr Rheumatol Rep 2006; 8:236 - 43; http://dx.doi.org/10.1007/s11926-996-0031-5; PMID: 16901083
  • Hale EK. Metastatic calcification. Dermatology Online J 2003; 9:2 (http://dermatology.cdlib.org/94/NYU/Nov2001/3.html)—accessed in October 2010.
  • Alkan O, Tokmak N, Demir S, Yildirim T. Metastatic pulmonary calcification in a patient with chronic renal failure. J Radiology Case Reports 2009; 3:14 - 7
  • Grech P, Ell PJ, Martin TJ, Barrington NA, Martin TJ. Diagnosis in metabolic bone disease. Hodder Arnold H&S: USA 1998; 300.
  • Mohr W. Apatite diseases. The pathological substrate in dependence of tissue processing and in consideration of pathogenesis. Aktuelle Rheumatol 2003; 28:53 - 8; http://dx.doi.org/10.1055/s-2003-37165
  • Gorospe M, Fadare O. Gastric mucosal calcinosis: clinicopathologic considerations. Adv Anat Pathol 2007; 14:224 - 8; http://dx.doi.org/10.1097/PAP.0b013e31805048ea; PMID: 17452819
  • Dubois LA, Gray DK, Tweedie EJ. Surgical images: soft tissue. Calcinosis cutis. Can J Surg 2007; 50:217 - 8; PMID: 17568495
  • Sprecher E. Familial tumoral calcinosis: from characterization of a rare phenotype to the pathogenesis of ectopic calcification. J Invest Dermatol 2010; 130:652 - 60; http://dx.doi.org/10.1038/jid.2009.337; PMID: 19865099
  • White DJ. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 1997; 105:508 - 22; http://dx.doi.org/10.1111/j.1600-0722.1997.tb00238.x; PMID: 9395117
  • Ciftçioğlu N, McKay DS. Pathological calcification and replicating calcifying-nanoparticles: general approach and correlation. Pediatr Res 2010; 67:490 - 9; PMID: 20094006
  • Tomazic BB. Characterization of mineral phases in cardiovascular calcification. In: Hydroxyapatite and related materials. Brown PW, Constantz B, Eds. CRC Press: Boca Raton FL, USA 1994; 93-116.
  • Lee RS, Kayser MV, Ali SY. Calcium phosphate microcrystal deposition in the human intervertebral disc. J Anat 2006; 208:13 - 9; http://dx.doi.org/10.1111/j.1469-7580.2006.00504.x; PMID: 16420375
  • Rosenthal AK. Update in calcium deposition diseases. Curr Opin Rheumatol 2007; 19:158 - 62; http://dx.doi.org/10.1097/BOR.0b013e3280145289; PMID: 17278931
  • Lagier R, Baud CA. Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol Res Pract 2003; 199:329 - 35; http://dx.doi.org/10.1078/0344-0338-00425; PMID: 12908523
  • Wesson JA, Ward MD. Pathological biomineralization of kidney stones. Elements 2007; 3:415 - 21; http://dx.doi.org/10.2113/GSELEMENTS.3.6.415
  • Hayes CW, Conway WF. Calcium hydroxyapatite deposition disease. Radiographics: a review publication of the Radiological Society of North America Inc. 1990; 10:1031-48.
  • Best JA, Shapiro RD, Kalmar J, Westesson PL. Hydroxyapatite deposition disease of the temporomandibular joint in a patient with renal failure. J Oral Maxillofac Surg 1997; 55:1316 - 22; http://dx.doi.org/10.1016/S0278-2391(97)90192-0; PMID: 9371127
  • Garcia GM, McCord GC, Kumar R. Hydroxyapatite crystal deposition disease. Semin Musculoskelet Radiol 2003; 7:187 - 93; http://dx.doi.org/10.1055/s-2003-43229; PMID: 14593560
  • Melrose J, Burkhardt D, Taylor TKF, Dillon CT, Read R, Cake M, et al. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. Eur Spine J 2009; 18:479 - 89; http://dx.doi.org/10.1007/s00586-008-0871-y; PMID: 19165512
  • LeGeros RZ, Orly I, LeGeros JP, Gomez C, Kazimiroff J, Tarpley T, et al. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi. Scanning Microsc 1988; 2:345 - 56; PMID: 3368765
  • Grases F, Llobera A. Experimental model to study sedimentary kidney stones. Micron 1998; 29:105 - 11; http://dx.doi.org/10.1016/S0968-4328(98)00006-7; PMID: 9684348
  • Lieske JC, Norris R, Toback FG. Adhesion of hydroxyapatite crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol Renal Physiol 1997; 273:224 - 33
  • Kirsch T. Determinants of pathological mineralization. Curr Opin Rheumatol 2006; 18:174 - 80; http://dx.doi.org/10.1097/01.bor.0000209431.59226.46; PMID: 16462525
  • Giachelli CM. Ectopic calcification: gathering hard facts about soft tissue mineralization. Am J Pathol 1999; 154:671 - 5; http://dx.doi.org/10.1016/S0002-9440(10)65313-8; PMID: 10079244
  • Kirsch T. Physiological and pathological mineralization: a complex multifactorial process. Curr Opin Orthop 2007; 18:425 - 7; http://dx.doi.org/10.1097/BCO.0b013e3282e6f3de
  • Speer MY, Giachelli CM. Regulation of cardiovascular calcification. Cardiovasc Pathol 2004; 13:63 - 70; http://dx.doi.org/10.1016/S1054-8807(03)00130-3; PMID: 15033154
  • Giachelli CM. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res 2005; 8:229 - 31; http://dx.doi.org/10.1111/j.1601-6343.2005.00345.x; PMID: 16238602
  • Giachelli CM, Speer MY, Li X, Rajachar RM, Yang H. Regulation of vascular calcification: roles of phosphate and osteopontin. Circ Res 2005; 96:717 - 22; http://dx.doi.org/10.1161/01.RES.0000161997.24797.c0; PMID: 15831823
  • Schmitt CP, Odenwald T, Ritz E. Calcium, calcium regulatory hormones, and calcimimetics: impact on cardiovascular mortality. J Am Soc Nephrol 2006; 17:Suppl 2 S78 - 80; http://dx.doi.org/10.1681/ASN.2005121338; PMID: 16565253
  • Azari F, Vali H, Guerquin-Kern JL, Wu TD, Croisy A, Sears SK, et al. Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification. J Struct Biol 2008; 162:468 - 79; http://dx.doi.org/10.1016/j.jsb.2008.03.003; PMID: 18424074
  • Stayton PS, Drobny GP, Shaw WJ, Long JR, Gilbert M. Molecular recognition at the protein-hydroxyapatite interface. Crit Rev Oral Biol Med 2003; 14:370 - 6; http://dx.doi.org/10.1177/154411130301400507; PMID: 14530305
  • Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004; 25:629 - 72; http://dx.doi.org/10.1210/er.2003-0015; PMID: 15294885
  • Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, de With G, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 2010; 9:1010 - 4; http://dx.doi.org/10.1038/nmat2900; PMID: 21076415
  • Lamas GA, Ackermann A. Clinical evaluation of chelation therapy: is there any wheat amidst the chaff?. Am Heart J 2000; 140:4 - 5; http://dx.doi.org/10.1067/mhj.2000.107549; PMID: 10874253
  • Knudtson ML, Wyse DG, Galbraith PD, Brant R, Hildebrand K, Paterson D, et al, Program to Assess Alternative Treatment Strategies to Achieve Cardiac Health (PATCH) Investigators. Chelation therapy for ischemic heart disease: a randomized controlled trial. JAMA 2002; 287:481 - 6; http://dx.doi.org/10.1001/jama.287.4.481; PMID: 11798370
  • Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 2008; 39:1062 - 91; http://dx.doi.org/10.1016/j.micron.2008.02.004; PMID: 18403210
  • Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification. Micron 2009; 40:169 - 93; http://dx.doi.org/10.1016/j.micron.2008.06.004; PMID: 18804381
  • Green D, Walsh D, Mann S, Oreffo ROC. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 2002; 30:810 - 5; http://dx.doi.org/10.1016/S8756-3282(02)00727-5; PMID: 12052446
  • Burke DE, de Markey CA, le Quesne PW, Cook JM. Biomimetic synthesis of the bis-indole alkaloid macralstonine. J Chem Soc Chem Communic 1972; 1346-7.
  • Breslow R. Centenary lecture: biomimetic chemistry. Chem Soc Rev 1972; 1:553 - 80; http://dx.doi.org/10.1039/cs9720100553
  • Benyus JM. Biomimicry: innovation inspired by nature. William Morrow, New York 1997; 308.
  • Watt JC. The behavior of calcium phosphate and calcium carbonate (bone salts) precipitated in various media, with applications to bone formation. Biol Bull 1923; 44:280 - 8; http://dx.doi.org/10.2307/1536715
  • Dorozhkin SV, Dorozhkina EI, Epple M. A model system to provide a good in vitro simulation of biological mineralization. Cryst Growth Des 2004; 4:389 - 95; http://dx.doi.org/10.1021/cg034066s
  • Izquierdo-Barba I, Salinas AJ, Vallet-RegI M. Effect of the continuous solution exchange on the in vitro reactivity of a CaO-SiO(2) sol-gel glass. J Biomed Mater Res 2000; 51:191 - 9; http://dx.doi.org/10.1002/(SICI)1097-4636(200008)51:2<191::AID-JBM7>3.0.CO;2-T; PMID: 10825218
  • Vallet-Regí M, Perez-Pariente J, Izquierdo-Barba I, Salinas AJ. Compositional variations in the calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem Mater 2000; 12:3770 - 5; http://dx.doi.org/10.1021/cm001068g
  • Koutsoukos P, Amjad Z, Tomson MB, Nancollas GH. Crystallization of calcium phosphates: a constant composition study. J Am Chem Soc 1980; 102:1553 - 7; http://dx.doi.org/10.1021/ja00525a015
  • Tomson MB, Nancollas GH. Mineralization kinetics: a constant composition approach. Science 1978; 200:1059 - 60; http://dx.doi.org/10.1126/science.200.4345.1059; PMID: 17740700
  • Manjubala I, Scheler S, Bössert J, Jandt KD. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2006; 2:75 - 84; http://dx.doi.org/10.1016/j.actbio.2005.09.007; PMID: 16701861
  • Cai HQ, Li QL, Zhou J, Tang J, Chen H. Biomimetic synthesis and cytocompatibility of agar-hydroxyapatite composites. J Clin Rehabil Tiss Eng Res 2010; 14:410 - 4
  • Yokoi T, Kawashita M, Kikuta K, Ohtsuki C. Biomimetic mineralization of calcium phosphate crystals in polyacrylamide hydrogel: effect of concentrations of calcium and phosphate ions on crystalline phases and morphology. Mater Sci Eng C 2010; 30:154 - 9; http://dx.doi.org/10.1016/j.msec.2009.09.012
  • Sadjadi MS, Meskinfam M, Sadeghi B, Jazdarreh H, Zare K. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater Chem Phys 2010; 124:217 - 22; http://dx.doi.org/10.1016/j.matchemphys.2010.06.022
  • Dorozhkin SV, Dorozhkina EI. The influence of bovine serum albumin on the crystallization of calcium phosphates from a revised simulated body fluid. Colloids Surf A Physicochem Eng Asp 2003; 215:191 - 9; http://dx.doi.org/10.1016/S0927-7757(02)00438-7
  • Dorozhkina EI, Dorozhkin SV. In vitro crystallization of carbonateapatite on cholesterol from a modified simulated body fluid. Colloids Surf A Physicochem Eng Asp 2003; 223:231 - 7; http://dx.doi.org/10.1016/S0927-7757(03)00221-8
  • Dorozhkin SV, Dorozhkina EI, Epple M. Precipitation of carbonateapatite from a revised simulated body fluid in the presence of glucose. J Appl Biomater Biomech 2003; 1:200 - 8; PMID: 20803458
  • Dorozhkin SV, Dorozhkina EI. In vitro simulation of vascular calcification by the controlled crystallization of amorphous calcium phosphates onto porous cholesterol. J Mater Sci 2005; 40:6417 - 22; http://dx.doi.org/10.1007/s10853-005-2154-x
  • Dorozhkin SV. In vitro mineralization of silicon containing calcium phosphate bioceramics. J Am Ceram Soc 2007; 90:244 - 9; http://dx.doi.org/10.1111/j.1551-2916.2006.01368.x
  • Becker A, Epple M. A high-throughput crystallisation device to study biomineralisation in vitro. Mater Res Soc Symp Proc 2005; 873:1-10.
  • Krings M, Kanellopoulou D, Mavrilas D, Glasmacher B. In vitro pH-controlled calcification of biological heart valve prostheses. Materialwiss Werkstofftech 2006; 37:432 - 5; http://dx.doi.org/10.1002/mawe.200600010
  • Wang LJ, Guan XY, Yin HY, Moradian-Oldak J, Nancollas GH. Mimicking the self-organized microstructure of tooth enamel. J Phys Chem C Nanomater Interfaces 2008; 112:5892 - 9; http://dx.doi.org/10.1021/jp077105+; PMID: 19169386
  • Howland J, Kramer B. Calcium and phosphorus in the serum in relation to rickets. Am J Dis Child 1921; 22:105 - 19
  • Tisdall FF. The effects of ultra violet rays on the calcium and inorganic phosphate content of the blood serum of rachitic infants. Can Med Assoc J 1922; 12:536 - 8; PMID: 20314169
  • Hanks JH, Wallace RE. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc Soc Exp Biol Med 1949; 71:196 - 200; PMID: 18134009
  • Shibata Y, Takashima H, Yamamoto H, Miyazaki T. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules. Int J Oral Maxillofac Implants 2004; 19:177 - 83; PMID: 15101587
  • Marques PAAP, Serro AP, Saramago BJ, Fernandes AC, Magalhães MCF, Correia RN. Mineralisation of two phosphate ceramics in HBSS: role of albumin. Biomaterials 2003; 24:451 - 60; http://dx.doi.org/10.1016/S0142-9612(02)00358-7; PMID: 12423600
  • Gopikrishna V, Baweja PS, Venkateshbabu N, Thomas T, Kandaswamy D. Comparison of coconut water, propolis, HBSS, and milk on PDL cell survival. J Endod 2008; 34:587 - 9; http://dx.doi.org/10.1016/j.joen.2008.01.018; PMID: 18436040
  • Hanawa T, Asami K, Asaoka K. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res 1998; 40:530 - 8; http://dx.doi.org/10.1002/(SICI)1097-4636(19980615)40:4<530::AID-JBM3>3.0.CO;2-G; PMID: 9599028
  • Rocha LA, Anza E, Costa AM, Oliveira FJ, Silva RF. Electrochemical behavior of Ti/Al2O3 interfaces produced by diffusion bonding. Mater Res 2003; 6:439 - 44; http://dx.doi.org/10.1590/S1516-14392003000400002
  • Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, et al. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol 2006; 76:309 - 16; http://dx.doi.org/10.1111/j.1600-0609.2005.00611.x; PMID: 16519702
  • Okazaki Y, Gotoh E. Corrosion fatigue properties of metallic biomaterials in Eagle’s medium. Mater Trans 2002; 43:2949 - 55; http://dx.doi.org/10.2320/matertrans.43.2949
  • Coelho MJ, Cabral AT, Fernande MH. Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serially passaged human bone marrow cells cultured in alpha-MEM and in DMEM. Biomaterials 2000; 21:1087 - 94; http://dx.doi.org/10.1016/S0142-9612(99)00284-7; PMID: 10817260
  • Mandel S, Tas AC. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5°C. Mater Sci Eng C 2010; 30:245 - 54; http://dx.doi.org/10.1016/j.msec.2009.10.009
  • Chen C, Lee IS, Zhang SM, Yang HC. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco’s phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater 2010; 6:2274 - 81; http://dx.doi.org/10.1016/j.actbio.2009.11.033; PMID: 19962459
  • Gao YB, Weng WJ, Deng XL, Cheng K, Liu XG, Du PY, et al. Surface morphology variations of porous nano-calcium phosphate/poly(L-lactic acid) composites in PBS. Key Eng Mater 2006; 309-11:569 - 72; http://dx.doi.org/10.4028/www.scientific.net/KEM.309-311.569
  • Lewis AC, Kilburn MR, Papageorgiou I, Allen GC, Case CP. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants. J Biomed Mater Res A 2005; 73:456 - 67; http://dx.doi.org/10.1002/jbm.a.30368; PMID: 15900610
  • Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent 2001; 85:162 - 9; http://dx.doi.org/10.1067/mpr.2001.113778; PMID: 11208206
  • Preetha A, Banerjee R. Comparison of artificial saliva substitutes. Trends Biomater Artif Organs 2005; 18:178 - 86
  • Sato Y, Sato T, Niwa M, Aoki H. Precipitation of octacalcium phosphates on artificial enamel in artificial saliva. J Mater Sci Mater Med 2006; 17:1173 - 7; http://dx.doi.org/10.1007/s10856-006-0545-4; PMID: 17122933
  • Grases F, Ramis M, Costa-Bauzá A. Effects of phytate and pyrophosphate on brushite and hydroxyapatite crystallization. Comparison with the action of other polyphosphates. Urol Res 2000; 28:136 - 40; http://dx.doi.org/10.1007/s002400050152; PMID: 10850638
  • Jenness R, Koops J. Preparation and properties of a salt solution which simulates milk ultrafiltrate. Neth Milk Dairy J 1962; 16:153 - 64
  • Spanos N, Patis A, Kanellopoulou D, Andritsos N, Koutsoukos PG. Precipitation of calcium phosphate from simulated milk ultrafiltrate solutions. Cryst Growth Des 2007; 7:25 - 9; http://dx.doi.org/10.1021/cg050361w
  • Gao R, van Halsema FED, Temminghoff EJM, van Leeuwen HP, van Valenberg HJF, Eisner MD, et al. Modelling ion composition in simulated milk ultrafiltrate (SMUF). I: Influence of calcium phosphate precipitation. Food Chem 2010; 122:700 - 9; http://dx.doi.org/10.1016/j.foodchem.2010.03.040
  • Gao R, van Halsema FED, Temminghoff EJM, van Leeuwen HP, van Valenberg HJF, Eisner MD, et al. Modelling ion composition in simulated milk ultrafiltrate (SMUF). II. Influence of pH, ionic strength and polyphosphates. Food Chem 2010; 122:710 - 5; http://dx.doi.org/10.1016/j.foodchem.2010.03.038
  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990; 24:721 - 34; http://dx.doi.org/10.1002/jbm.820240607; PMID: 2361964
  • Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005; 26:1097 - 108; http://dx.doi.org/10.1016/j.biomaterials.2004.05.034; PMID: 15451629
  • Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 ° C in synthetic body fluids. Biomaterials 2000; 21:1429 - 38; http://dx.doi.org/10.1016/S0142-9612(00)00019-3; PMID: 10872772
  • Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials 2005; 26:2835 - 45; http://dx.doi.org/10.1016/j.biomaterials.2004.08.010; PMID: 15603779
  • Jalota S, Bhaduri SB, Tas AC. Using a synthetic body fluid (SBF) solution of 27 mM HCO3- to make bone substitutes more osteointegrative. Mater Sci Eng C 2008; 28:129 - 40; http://dx.doi.org/10.1016/j.msec.2007.10.058
  • Kim HM, Miyazaki T, Kokubo T, Nakamura T. Revised simulated body fluid. In: Bioceramics 13, Giannini S, Moroni A, Eds. Trans Tech Publ.: Switzerland 2001; 192:47-50.
  • Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A 2003; 65:188 - 95; http://dx.doi.org/10.1002/jbm.a.10482; PMID: 12734811
  • Müller L, Müller FA. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater 2006; 2:181 - 9; http://dx.doi.org/10.1016/j.actbio.2005.11.001; PMID: 16701876
  • Hu K, Yang XJ, Cai YL, Cui ZD, Wei Q. Preparation of bone-like composite coating using a modified simulated body fluid with high Ca and P concentrations. Surf Coat Tech 2006; 201:1902 - 6; http://dx.doi.org/10.1016/j.surfcoat.2006.02.036
  • Wen Z, Wu C, Dai C, Yang F. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. J Alloy Comp 2009; 488:392 - 9; http://dx.doi.org/10.1016/j.jallcom.2009.08.147
  • Gemelli E, Resende CX, de Almeida Soares GD. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. J Mater Sci Mater Med 2010; 21:2035 - 47; http://dx.doi.org/10.1007/s10856-010-4074-9; PMID: 20390323
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 2006; 27:2907 - 15; http://dx.doi.org/10.1016/j.biomaterials.2006.01.017; PMID: 16448693
  • Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution?. Biomaterials 2009; 30:2175 - 9; http://dx.doi.org/10.1016/j.biomaterials.2009.01.008; PMID: 19176246
  • Kim HM. Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci 2003; 7:289 - 99; http://dx.doi.org/10.1016/j.cossms.2003.09.014
  • Marques PAAP, Magalhães MCF, Correia RN. Inorganic plasma with physiological CO2/HCO3- buffer. Biomaterials 2003; 24:1541 - 8; http://dx.doi.org/10.1016/S0142-9612(02)00539-2; PMID: 12559814
  • Dorozhkina EI, Dorozhkin SV. Surface mineralisation of hydroxyapatite in modified simulated body fluid (mSBF) with higher amounts of hydrogencarbonate ions. Colloids Surf A Physicochem Eng Asp 2002; 210:41 - 8; http://dx.doi.org/10.1016/S0927-7757(02)00217-0
  • Marques PAAP, Cachinho SCP, Magalhães MCF, Correia RN, Fernandes MHV. Mineralization of bioceramics in simulated plasma with physiological CO2/HCO3- buffer and albumin. J Mater Chem 2004; 14:1861 - 6; http://dx.doi.org/10.1039/b403495c
  • Pasinli A, Yuksel M, Celik E, Sener S, Tas AC. A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid-Na lactate buffered body fluid solution. Acta Biomater 2010; 6:2282 - 8; http://dx.doi.org/10.1016/j.actbio.2009.12.013; PMID: 20004750
  • Sun T, Wang M. Electrochemical deposition of apatite/collagen composite coating on NiTi shape memory alloy and coating properties. Mater Res Soc Symp Proc 2010; 1239:141-6.
  • Dorozhkin SV, Dorozhkina EI. Crystallization from a milk-based revised simulated body fluid. Biomed Mater 2007; 2:87 - 92; http://dx.doi.org/10.1088/1748-6041/2/2/005; PMID: 18458440
  • Miyaji F, Kim HM, Handa S, Kokubo T, Nakamura T. Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution. Biomaterials 1999; 20:913 - 9; http://dx.doi.org/10.1016/S0142-9612(98)00235-X; PMID: 10353645
  • Kim HM, Kishimoto K, Miyaji F, Kokubo T, Yao T, Suetsugu Y, et al. Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion. J Mater Sci Mater Med 2000; 11:421 - 6; http://dx.doi.org/10.1023/A:1008935924847; PMID: 15348007
  • Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials 2002; 23:1921 - 30; http://dx.doi.org/10.1016/S0142-9612(01)00318-0; PMID: 11996032
  • Barrere F, van BC, de GK, Layrolle P. Nucleation of biomimetic Ca-P coatings on ti6A14V from a SBF x 5 solution: influence of magnesium. Biomaterials 2002; 23:2211 - 20; http://dx.doi.org/10.1016/S0142-9612(01)00354-4; PMID: 11962662
  • Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10x simulated body fluid. J Mater Res 2004; 19:2742 - 9; http://dx.doi.org/10.1557/JMR.2004.0349
  • Dorozhkina EI, Dorozhkin SV. Structure and properties of the precipitates formed from condensed solutions of the revised simulated body fluid. J Biomed Mater Res A 2003; 67:578 - 81; http://dx.doi.org/10.1002/jbm.a.10127; PMID: 14566800
  • Sato K. Mechanism of hydroxyapatite mineralization in biological systems. J Ceram Soc Jpn 2007; 115:124 - 30; http://dx.doi.org/10.2109/jcersj.115.124
  • Pompe W, Lampenscherf S, Rößler S, Scharnweber D, Weis K, Worch H, et al. Functionally graded bioceramics. Mater Sci Forum 1999; 308-11:325 - 30; http://dx.doi.org/10.4028/www.scientific.net/MSF.308-311.325
  • Fan Y, Duan K, Wang R. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials 2005; 26:1623 - 32; http://dx.doi.org/10.1016/j.biomaterials.2004.06.019; PMID: 15576136
  • Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001; 22:1705 - 11; http://dx.doi.org/10.1016/S0142-9612(00)00305-7; PMID: 11396873
  • Yamauchi K, Goda T, Takeuchi N, Einaga H, Tanabe T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials 2004; 25:5481 - 9; http://dx.doi.org/10.1016/j.biomaterials.2003.12.057; PMID: 15142729
  • Zhang W, Huang ZL, Liao SS, Cui FZ. Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc 2003; 86:1052 - 4; http://dx.doi.org/10.1111/j.1151-2916.2003.tb03422.x
  • Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 2003; 67:618 - 25; http://dx.doi.org/10.1002/jbm.a.10039; PMID: 14566805
  • Wang Y, Yang C, Chen X, Zhao N. Biomimetic formation of hydroxyapatite/collagen matrix composite. Adv Eng Mater 2006; 8:97 - 100; http://dx.doi.org/10.1002/adem.200500220
  • Lickorish D, Ramshaw JAM, Werkmeister JA, Glattauer V, Howlett CR. Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res A 2004; 68:19 - 27; http://dx.doi.org/10.1002/jbm.a.20031; PMID: 14661245
  • Yunoki S, Ikoma T, Monkawa A, Ohta K, Tanaka J. Preparation and characterization of hydroxyapatite/collagen nanocomposite gel. J Nanosci Nanotechnol 2007; 7:818 - 21; http://dx.doi.org/10.1166/jnn.2007.504; PMID: 17450839
  • Nassif N, Gobeaux F, Seto J, Belamie E, Davidson P, Panine P, et al. Self-assembled collagen-apatite matrix with bone-like hierarchy. Chem Mater 2010; 22:3307 - 9; http://dx.doi.org/10.1021/cm903594n
  • Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 2002; 23:3227 - 34; http://dx.doi.org/10.1016/S0142-9612(02)00077-7; PMID: 12102194
  • Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 2005; 26:5221 - 30; http://dx.doi.org/10.1016/j.biomaterials.2005.01.047; PMID: 15792549
  • Kim HW, Knowles JC, Kim HE. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B Appl Biomater 2005; 74:686 - 98; http://dx.doi.org/10.1002/jbm.b.30236; PMID: 15988752
  • Chen Z, Li QL, Zen Q, Li G, Jiang H, Liu L, et al. Biomimetic mineralization and bioactivity of phosphorylated chitosan. Key Eng Mater 2005; 288-9:429 - 32; http://dx.doi.org/10.4028/www.scientific.net/KEM.288-289.429
  • Li QL, Chen Z, Ou G, Liu L, Jiang H, Zeng Q, et al. Biomimetic synthesis of apatite-polyelectrolyte complex (chitosan-phosphorylated chitosan) hydrogel as an osteoblast carrier. Key Eng Mater 2005; 288-9:75 - 8; http://dx.doi.org/10.4028/www.scientific.net/KEM.288-289.75
  • Stupp SI, Ciegler GW. Organoapatites: materials for artificial bone. I. Synthesis and microstructure. J Biomed Mater Res 1992; 26:169 - 83; http://dx.doi.org/10.1002/jbm.820260204; PMID: 1569112
  • Stupp SI, Braun PV. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 1997; 277:1242 - 8; http://dx.doi.org/10.1126/science.277.5330.1242; PMID: 9271562
  • Stupp SI, Mejicano GC, Hanson JA. Organoapatites: materials for artificial bone. II. Hardening reactions and properties. J Biomed Mater Res 1993; 27:289 - 99; http://dx.doi.org/10.1002/jbm.820270303; PMID: 8360199
  • Stupp SI, Hanson JA, Eurell JA, Ciegler GW, Johnson A. Organoapatites: materials for artificial bone. III. Biological testing. J Biomed Mater Res 1993; 27:301 - 11; http://dx.doi.org/10.1002/jbm.820270304; PMID: 8360200
  • Liu Y, Layrolle P, de Bruijn J, van Blitterswijk CA, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res 2001; 57:327 - 35; http://dx.doi.org/10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J; PMID: 11523027
  • Wang J, Layrolle P, Stigter M, de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 2004; 25:583 - 92; http://dx.doi.org/10.1016/S0142-9612(03)00559-3; PMID: 14607496
  • Zhang Q, Leng Y. Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials 2005; 26:3853 - 9; http://dx.doi.org/10.1016/j.biomaterials.2004.09.057; PMID: 15626433
  • Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, et al. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 2005; 26:4085 - 9; http://dx.doi.org/10.1016/j.biomaterials.2004.10.034; PMID: 15664635
  • Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res A 2003; 67:1305 - 9; http://dx.doi.org/10.1002/jbm.a.20039; PMID: 14624517
  • Allegrini S Jr., Rumpel E, Kauschke E, Fanghänel J, König B Jr.. Hydroxyapatite grafting promotes new bone formation and osseointegration of smooth titanium implants. Ann Anat 2006; 188:143 - 51; http://dx.doi.org/10.1016/j.aanat.2005.08.019; PMID: 16551011
  • Arnould C, Delhalle J, Mekhalif Z. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films. Electrochim Acta 2008; 53:5632 - 8; http://dx.doi.org/10.1016/j.electacta.2008.03.003
  • Iwatsubo T, Kusumocahyo SP, Kanamori T, Shinbo T. Mineralization of hydroxyapatite on a polymer substrate in a solution supersaturated by polyelectrolyte. J Appl Polym Sci 2006; 100:1465 - 70; http://dx.doi.org/10.1002/app.23496
  • Bodin A, Gustafsson L, Gatenholm P. Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate. J Biomater Sci Polym Ed 2006; 17:435 - 47; http://dx.doi.org/10.1163/156856206776374106; PMID: 16768294
  • Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006; 27:631 - 42; http://dx.doi.org/10.1016/j.biomaterials.2005.06.017; PMID: 16081155
  • Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials 2005; 26:5492 - 9; http://dx.doi.org/10.1016/j.biomaterials.2005.01.043; PMID: 15860205
  • Hench LL. Biomaterials: a forecast for the future. Biomaterials 1998; 19:1419 - 23; http://dx.doi.org/10.1016/S0142-9612(98)00133-1; PMID: 9794512
  • Jones JR, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 2003; 7:301 - 7; http://dx.doi.org/10.1016/j.cossms.2003.09.012
  • Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science 2002; 295:1009 - 14; http://dx.doi.org/10.1126/science.1069210; PMID: 11834815
  • Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295:1014 - 7; http://dx.doi.org/10.1126/science.1067404; PMID: 11834817
  • Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004; 6:41 - 75; http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027; PMID: 15255762
  • Drouet C, Largeot C, Raimbeaux G, Estournès C, Dechambre G, Combes C, et al. Bioceramics: spark plasma sintering (SPS) of calcium phosphates. Adv Sci Technol 2006; 49:45 - 50; http://dx.doi.org/10.4028/www.scientific.net/AST.49.45
  • Anderson JM. The future of biomedical materials. J Mater Sci Mater Med 2006; 17:1025 - 8; http://dx.doi.org/10.1007/s10856-006-0439-5; PMID: 17122914
  • White AA, Best SM, Kinloch IA. Hydroxyapatite—carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 2007; 4:1 - 13; http://dx.doi.org/10.1111/j.1744-7402.2007.02113.x
  • Kealley C, Elcombe M, van Riessen A, Ben-Nissan B. Development of carbon nanotube-reinforced hydroxyapatite bioceramics. Physica B 2006; 385-6:496 - 8; http://dx.doi.org/10.1016/j.physb.2006.05.254
  • Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 2007; 28:618 - 24; http://dx.doi.org/10.1016/j.biomaterials.2006.09.013; PMID: 17007921
  • Dorozhkin SV. Green chemical synthesis of calcium phosphate bioceramics. J Appl Biomater Biomech 2008; 6:104 - 9; PMID: 20740453
  • Salinas AJ, Vallet-Regí M. Evolution of ceramics with medical applications. Z Anorg Allg Chem 2007; 633:1762 - 73; http://dx.doi.org/10.1002/zaac.200700278
  • Matsumoto T, Okazaki M, Nakahira A, Sasaki J, Egusa H, Sohmura T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem 2007; 14:2726 - 33; http://dx.doi.org/10.2174/092986707782023208; PMID: 17979722
  • Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, et al. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 2006; 110:260 - 5; http://dx.doi.org/10.1016/j.jconrel.2005.09.051; PMID: 16313993
  • Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 2006; 113:102 - 10; http://dx.doi.org/10.1016/j.jconrel.2006.04.007; PMID: 16740332
  • Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system?. Biomaterials 2006; 27:2171 - 7; http://dx.doi.org/10.1016/j.biomaterials.2005.11.023; PMID: 16332349
  • Fan J, Lei J, Yu C, Tu B, Zhao D. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater Chem Phys 2007; 103:489 - 93; http://dx.doi.org/10.1016/j.matchemphys.2007.02.069
  • Barrère F, Mahmood TA, de Groot K, van Blitterswijk CA. Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng Rep 2008; 59:38 - 71; http://dx.doi.org/10.1016/j.mser.2007.12.001
  • Sudo A, Hasegawa M, Fukuda A, Uchida A. Treatment of infected hip arthroplasty with antibiotic-impregnated calcium hydroxyapatite. J Arthroplasty 2008; 23:145 - 50; http://dx.doi.org/10.1016/j.arth.2006.09.009; PMID: 18165045
  • Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 2010; 15:547 - 52; http://dx.doi.org/10.1016/j.drudis.2010.05.003; PMID: 20546919
  • Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA, et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater 2010; 19:30 - 40; PMID: 20178096
  • Jiang PJ, Wynn-Jones G, Grover LM. A calcium phosphate cryogel for alkaline phosphatase encapsulation. J Mater Sci 2010; 45:5257 - 63; http://dx.doi.org/10.1007/s10853-010-4568-3
  • Williams DF. The Williams dictionary of biomaterials. Liverpool University Press: Liverpool UK 1999; 368.
  • Kohane DS, Langer R. Biocompatibility and drug delivery systems. Chem Sci 2010; 1:441 - 6; http://dx.doi.org/10.1039/c0sc00203h
  • Frondel C. Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am Mineral 1941; 26:145 - 52
  • Frondel C. Mineralogy of the calcium phosphates in insular phosphate rock. Am Mineral 1943; 28:215 - 32
  • Li X, Ito A, Sogo Y, Wang X, LeGeros RZ. Solubility of Mg-containing beta-tricalcium phosphate at 25 ° C. Acta Biomater 2009; 5:508 - 17; http://dx.doi.org/10.1016/j.actbio.2008.06.010; PMID: 18644755
  • Calvo C, Gopal R. The crystal structure of whitlockite from the Palermo Quarry. Am Mineral 1975; 60:120 - 33
  • http://rruff.geo.arizona.edu/doclib/hom/whitlockite.pdf (accessed in October 2010).
  • Knowles JC, Callcut S, Georgiou G. Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials 2000; 21:1387 - 92; http://dx.doi.org/10.1016/S0142-9612(00)00032-6; PMID: 10850933
  • Kumar R, Prakash KH, Cheang P, Khor KA. Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 2004; 20:5196 - 200; http://dx.doi.org/10.1021/la049304f; PMID: 15986652
  • Sung YM, Lee JC, Yang JW. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J Cryst Growth 2004; 262:467 - 72; http://dx.doi.org/10.1016/j.jcrysgro.2003.10.001
  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002; 295:2418 - 21; http://dx.doi.org/10.1126/science.1070821; PMID: 11923529
  • Reid JW, Hendry JA. Rapid, accurate phase quantification of multiphase calcium phosphate materials using Rietveld refinement. J Appl Cryst 2006; 39:536 - 43; http://dx.doi.org/10.1107/S0021889806020395
  • Rogers AF. Dahllite from Tonopah, Nevada; Voelckerite, a new basic calcium phosphate; comments on the chemical composition of apatite and phosphorite. Z Krystallogr Mineral 1912; 52:209 - 17
  • Schaller WT. The probable identity of podolite with dahllite. Am J Sci 1910; 30:309 - 10; http://dx.doi.org/10.2475/ajs.s4-30.179.309
  • Schaller WT. On the likely identity of podolite and dahllite. Z Krystallogr Mineral 1910; 48:559 - 61
  • Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecaš IB, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 2010; 256:6083 - 9; http://dx.doi.org/10.1016/j.apsusc.2010.03.124
  • Li Y, Ho J, Ooi CP. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater Sci Eng C 2010; 30:1137 44; http://dx.doi.org/10.1016/j.apsusc.2010.03.124