1,789
Views
24
CrossRef citations to date
0
Altmetric
Special Focus Review

New methods to study the composition and structure of the extracellular matrix in natural and bioengineered tissues

&
Pages 115-131 | Published online: 01 Jul 2012

References

  • Robert L. Matrix biology: past, present and future. Pathol Biol (Paris) 2001; 49:279 - 83; http://dx.doi.org/10.1016/S0369-8114(01)00141-9; PMID: 11428162
  • Pradhan S, Farach-Carson MC. Mining the extracellular matrix for tissue engineering applications. Regen Med 2010; 5:961 - 70; http://dx.doi.org/10.2217/rme.10.61; PMID: 21082894
  • Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al, National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008; 58:15 - 25; http://dx.doi.org/10.1002/art.23177; PMID: 18163481
  • Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 1998; 41:778 - 99; http://dx.doi.org/10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V; PMID: 9588729
  • Flessner MF. The role of extracellular matrix in transperitoneal transport of water and solutes. Perit Dial Int 2001; 21:Suppl 3 S24 - 9; PMID: 11887829
  • Tolar J, Blazar BR, Wagner JE. Concise review: Transplantation of human hematopoietic cells for extracellular matrix protein deficiency in epidermolysis bullosa. Stem Cells 2011; 29:900 - 6; http://dx.doi.org/10.1002/stem.647; PMID: 21557391
  • Piez KA. History of extracellular matrix: a personal view. Matrix Biol 1997; 16:85 - 92; http://dx.doi.org/10.1016/S0945-053X(97)90037-8; PMID: 9314158
  • Brinckmann J. Collagens at a Glance. Top Curr Chem 2005; 247:1 - 6; http://dx.doi.org/10.1007/b103817
  • Gordon MK, Hahn RA. Collagens. Cell Tissue Res 2010; 339:247 - 57; http://dx.doi.org/10.1007/s00441-009-0844-4; PMID: 19693541
  • Eyre D. Collagen of articular cartilage. Arthritis Res 2002; 4:30 - 5; http://dx.doi.org/10.1186/ar380; PMID: 11879535
  • Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 2008; 63:492 - 6; http://dx.doi.org/10.1203/PDR.0b013e31816c5bc3; PMID: 18427293
  • Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84:649 - 98; http://dx.doi.org/10.1152/physrev.00031.2003; PMID: 15044685
  • Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix. Tissue Eng Part B Rev 2008; 14:275 - 83; http://dx.doi.org/10.1089/ten.teb.2008.0083; PMID: 19183102
  • Eyre DR. Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res 2004; 427:Suppl S118 - 22; http://dx.doi.org/10.1097/01.blo.0000144855.48640.b9; PMID: 15480053
  • Huster D. Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu Rep NMR Spectrosc 2008; 64:127 - 59; http://dx.doi.org/10.1016/S0066-4103(08)00004-5
  • Schiller J, Fuchs B, Arnhold J, Arnold K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr Med Chem 2003; 10:2123 - 45; http://dx.doi.org/10.2174/0929867033456828; PMID: 12871089
  • Linsenmayer TF, Fitch JM, Birk DE. Heterotypic collagen fibrils and stabilizing collagens. Controlling elements in corneal morphogenesis?. Ann N Y Acad Sci 1990; 580:143 - 60; http://dx.doi.org/10.1111/j.1749-6632.1990.tb17926.x; PMID: 2159749
  • Ebert G. Biopolymere, Teubner-Verlag, Stuttgart, 1993.
  • Scott JE. Extracellular matrix, supramolecular organisation and shape. J Anat 1995; 187:259 - 69; PMID: 7591990
  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 2011; 40:1053 - 63; http://dx.doi.org/10.1007/s00726-010-0715-z; PMID: 20697752
  • Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 2010; 45:106 - 24; http://dx.doi.org/10.3109/10409231003627991; PMID: 20199358
  • Knauss R, Schiller J, Fleischer G, Kärger J, Arnold K. Self-diffusion of water in cartilage and cartilage components as studied by pulsed field gradient NMR. Magn Reson Med 1999; 41:285 - 92; http://dx.doi.org/10.1002/(SICI)1522-2594(199902)41:2<285::AID-MRM11>3.0.CO;2-3; PMID: 10080275
  • Schmid TM, Linsenmayer TF. Denaturation-renaturation properties of two molecular forms of short-chain cartilage collagen. Biochemistry 1984; 23:553 - 8; http://dx.doi.org/10.1021/bi00298a024; PMID: 6704382
  • Fujisawa R, Tamura M. Acidic bone matrix proteins and their roles in calcification. Front Biosci 2012; 17:1891 - 903; http://dx.doi.org/10.2741/4026; PMID: 22201843
  • Sasisekharan R, Raman R, Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 2006; 8:181 - 231; http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095745; PMID: 16834555
  • Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 2003; 13:612 - 20; http://dx.doi.org/10.1016/j.sbi.2003.09.011; PMID: 14568617
  • Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2007; 29:17 - 25; http://dx.doi.org/10.1007/s10529-006-9219-z; PMID: 17091377
  • Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 1997; 242:27 - 33; http://dx.doi.org/10.1046/j.1365-2796.1997.00170.x; PMID: 9260563
  • Volpi N. Therapeutic applications of glycosaminoglycans. Curr Med Chem 2006; 13:1799 - 810; http://dx.doi.org/10.2174/092986706777452470; PMID: 16787222
  • Ramacciotti E, Clark M, Sadeghi N, Hoppensteadt D, Thethi I, Gomes M, et al. Review: contaminants in heparin: review of the literature, molecular profiling, and clinical implications. Clin Appl Thromb Hemost 2011; 17:126 - 35; http://dx.doi.org/10.1177/1076029610392214; PMID: 21288929
  • Liu H, Zhang Z, Linhardt RJ. Lessons learned from the contamination of heparin. Nat Prod Rep 2009; 26:313 - 21; http://dx.doi.org/10.1039/b819896a; PMID: 19240943
  • Carney SL, Osborne DJ. The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis. Anal Biochem 1991; 195:132 - 40; http://dx.doi.org/10.1016/0003-2697(91)90308-G; PMID: 1909507
  • Karamanos NK, Syrokou A, Vanky P, Nurminen M, Hjerpe A. Determination of 24 variously sulfated galactosaminoglycan- and hyaluronan-derived disaccharides by high-performance liquid chromatography. Anal Biochem 1994; 221:189 - 99; http://dx.doi.org/10.1006/abio.1994.1396; PMID: 7985792
  • Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U. Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2002; 2:521 - 8; http://dx.doi.org/10.1038/nrc842; PMID: 12094238
  • Lu Y, Parker KH, Wang W. Effects of osmotic pressure in the extracellular matrix on tissue deformation. Philos Transact A Math Phys Eng Sci 2006; 364:1407 - 22; http://dx.doi.org/10.1098/rsta.2006.1778; PMID: 16766352
  • Huster D, Schiller J, Arnold K. Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid-state NMR spectroscopy. Magn Reson Med 2002; 48:624 - 32; http://dx.doi.org/10.1002/mrm.10272; PMID: 12353279
  • Scheidt HA, Schibur S, Magalhães A, de Azevedo ER, Bonagamba TJ, Pascui O, et al. The mobility of chondroitin sulfate in articular and artificial cartilage characterized by 13C magic-angle spinning NMR spectroscopy. Biopolymers 2010; 93:520 - 32; PMID: 20091673
  • Deuerling JM, Yue W, Espinoza Orías AA, Roeder RK. Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. J Biomech 2009; 42:2061 - 7; http://dx.doi.org/10.1016/j.jbiomech.2009.06.002; PMID: 19664772
  • Reinert T, Reibetanz U, Vogt J, Butz T, Werner A, Gründer W. Spatially resolved elemental distributions in articular cartilage. Nucl Instr. Meth Phys Res B 2001; 181:516 - 21
  • Comper WD. Extracellular matrix interactions: sulfation of connective tissue polysaccharides creates macroion binding templates and conditions for dissipative structure formation. J Theor Biol 1990; 145:497 - 509; http://dx.doi.org/10.1016/S0022-5193(05)80484-9; PMID: 2246898
  • Buschmann MD, Grodzinsky AJ. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 1995; 117:179 - 92; http://dx.doi.org/10.1115/1.2796000; PMID: 7666655
  • Donnan FG. The theory of membrane equilibria. Chem Rev 1924; 1:73 - 90; http://dx.doi.org/10.1021/cr60001a003
  • Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW. Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A 1986; 83:2879 - 83; http://dx.doi.org/10.1073/pnas.83.9.2879; PMID: 3458248
  • Gründer W, Kanowski M, Wagner M, Werner A. Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy. Magn Reson Med 2000; 43:884 - 91; http://dx.doi.org/10.1002/1522-2594(200006)43:6<884::AID-MRM15>3.0.CO;2-U; PMID: 10861884
  • Zernia G, Huster D. Collagen dynamics in articular cartilage under osmotic pressure. NMR Biomed 2006; 19:1010 - 9; http://dx.doi.org/10.1002/nbm.1061; PMID: 16823903
  • Lai WM, Gu WY, Mow VC. On the conditional equivalence of chemical loading and mechanical loading on articular cartilage. J Biomech 1998; 31:1181 - 5; http://dx.doi.org/10.1016/S0021-9290(98)00099-2; PMID: 9882052
  • Schmitz N, Laverty S, Kraus VB, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthritis Cartilage 2010; 18:Suppl 3 S113 - 6; http://dx.doi.org/10.1016/j.joca.2010.05.026; PMID: 20864017
  • Puchtler H, Meloan SN, Waldrop FS. Are picro-dye reactions for collagens quantitative? Chemical and histochemical considerations. Histochemistry 1988; 88:243 - 56; PMID: 3284850
  • Prentø P. Staining of macromolecules: possible mechanisms and examples. Biotech Histochem 2009; 84:139 - 58; http://dx.doi.org/10.1080/10520290902908810; PMID: 19384746
  • Gold EW. The quantitative spectrophotometric estimation of total sulfated glycosaminoglycan levels. Formation of soluble alcian blue complexes. Biochim Biophys Acta 1981; 673:408 - 15; http://dx.doi.org/10.1016/0304-4165(81)90472-4; PMID: 6784773
  • Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal Biochem 1962; 4:330 - 4; http://dx.doi.org/10.1016/0003-2697(62)90095-7; PMID: 13971270
  • Frazier SB, Roodhouse KA, Hourcade DE, Zhang L. The quantification of glycosaminoglycans: A comparison of HPLC, carbazole, and alcian blue methods. Open Glycosci 2008; 1:31 - 9; http://dx.doi.org/10.2174/1875398100801010031; PMID: 20640171
  • Hofman K, Hall B, Cleaver H, Marshall S. High-throughput quantification of hydroxyproline for determination of collagen. Anal Biochem 2011; 417:289 - 91; http://dx.doi.org/10.1016/j.ab.2011.06.019; PMID: 21741948
  • Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 1996; 29:225 - 9; http://dx.doi.org/10.1016/0009-9120(96)00003-6; PMID: 8740508
  • Bronckers AL, Lyaruu DM, Wöltgens JH. Immunohistochemistry of extracellular matrix proteins during various stages of dentinogenesis. Connect Tissue Res 1989; 22:65 - 70; http://dx.doi.org/10.3109/03008208909114121; PMID: 2689085
  • Ernst RR, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press; 1987.
  • Torchia DA, Hasson MA, Hascall VC. Investigation of molecular motion of proteoglycans in cartilage by 13C magnetic resonance. J Biol Chem 1977; 252:3617 - 25; PMID: 140875
  • Torchia DA. Solid state NMR studies of molecular motion in collagen fibrils. Methods Enzymol 1982; 82:174 - 86; http://dx.doi.org/10.1016/0076-6879(82)82063-6
  • Kolodziejski W. Solid-state NMR studies of bone. Top Curr Chem 2005; 246:235 - 70; http://dx.doi.org/10.1007/b98652; PMID: 22160292
  • Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 2003; 72:610 - 26; http://dx.doi.org/10.1007/s00223-002-1068-8; PMID: 12724829
  • Wise ER, Maltsev S, Davies ME, Duer MJ, Jaeger C, Loveridge N, et al. The organic-mineral interface in bone is predominantly polysaccharide. Chem Mater 2007; 19:5055 - 7; http://dx.doi.org/10.1021/cm702054c
  • Wiedmann TS. Influence of hydration on epidermal tissue. J Pharm Sci 1988; 77:1037 - 41; http://dx.doi.org/10.1002/jps.2600771210; PMID: 3244107
  • Saito H. Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid state 13C NMR. Magn Reson Chem 1986; 24:835 - 52; http://dx.doi.org/10.1002/mrc.1260241002
  • Eliav U, Navon G. Collagen fibers as a chiral agent: A demonstration of stereochemistry effects. J Am Chem Soc 2006; 128:15956 - 7; http://dx.doi.org/10.1021/ja065047k; PMID: 17165707
  • Fechete R, Demco DE, Blümich B, Eliav U, Navon G. Anisotropy of collagen fiber orientation in sheep tendon by 1H double-quantum-filtered NMR signals. J Magn Reson 2003; 162:166 - 75; http://dx.doi.org/10.1016/S1090-7807(02)00200-8; PMID: 12762993
  • Weber F, Böhme J, Scheidt HA, Gründer W, Rammelt S, Hacker M, et al. 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed 2012; 25:464 - 75; http://dx.doi.org/10.1002/nbm.1649; PMID: 22351643
  • Waugh JS. Uncoupling of local field spectra in nuclear magnetic resonance: determination of atomic positions in solids. Proc Natl Acad Sci U S A 1976; 73:1394 - 7; http://dx.doi.org/10.1073/pnas.73.5.1394; PMID: 1064013
  • Andrew ER, Bradbury A, Eades RG. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 1958; 182:1659; http://dx.doi.org/10.1038/1821659a0
  • Saitô H, Tabeta R, Shoji A, Ozaki T, Ando I, Miyata T. A high-resolution 13C-NMR study of collagenlike polypeptides and collagen fibrils in solid state studied by the cross-polarization-magic angle-spinning method. Manifestation of conformation-dependent 13C chemical shifts and application to conformational characterization. Biopolymers 1984; 23:2279 - 97; http://dx.doi.org/10.1002/bip.360231111; PMID: 6498301
  • Fujisawa R, Kuboki Y. High-resolution solid-state nuclear magnetic resonance spectra of dentin collagen. Biochem Biophys Res Commun 1990; 167:761 - 6; http://dx.doi.org/10.1016/0006-291X(90)92090-M; PMID: 2322249
  • Gröger C, Lutz K, Brunner E. NMR studies of biomineralisation. Prog Nucl Magn Reson Spectrosc 2009; 54:54 - 68; http://dx.doi.org/10.1016/j.pnmrs.2008.02.003
  • Lindon JC, Beckonert OP, Holmes E, Nicholson JK. High-resolution magic angle spinning NMR spectroscopy: Application to biomedical studies. Prog Nucl Magn Reson Spectrosc 2009; 55:79 - 100; http://dx.doi.org/10.1016/j.pnmrs.2008.11.004
  • Jelinski LW, Sullivan CE, Torchia DA. 2H NMR study of molecular motion in collagen fibrils. Nature 1980; 284:531 - 4; http://dx.doi.org/10.1038/284531a0; PMID: 7366722
  • Batchelder LS, Sullivan CE, Jelinski LW, Torchia DA. Characterization of leucine side-chain reorientation in collagen-fibrils by solid-state 2H NMR. Proc Natl Acad Sci U S A 1982; 79:386 - 9; http://dx.doi.org/10.1073/pnas.79.2.386; PMID: 6952191
  • Sarkar SK, Sullivan CE, Torchia DA. Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 nuclear magnetic resonance relaxation study. Biochemistry 1985; 24:2348 - 54; http://dx.doi.org/10.1021/bi00330a033; PMID: 3995016
  • Sarkar SK, Hiyama Y, Niu CH, Young PE, Gerig JT, Torchia DA. Molecular dynamics of collagen side chains in hard and soft tissues. A multinuclear magnetic resonance study. Biochemistry 1987; 26:6793 - 800; http://dx.doi.org/10.1021/bi00395a032; PMID: 3427044
  • Sarkar SK, Sullivan CE, Torchia DA. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J Biol Chem 1983; 258:9762 - 7; PMID: 6885769
  • Brewer CF, Keiser H. Carbon-13 nuclear magnetic resonance study of chondroitin 4-sulfate in the proteoglycan of bovine nasal cartilage. Proc Natl Acad Sci U S A 1975; 72:3421 - 3; http://dx.doi.org/10.1073/pnas.72.9.3421; PMID: 127176
  • Naji L, Kaufmann J, Huster D, Schiller J, Arnold K. 13C NMR relaxation study on cartilage and cartilage components. The origin of 13C NMR spectra of cartilage. Carbohydr Res 2000; 327:439 - 46; http://dx.doi.org/10.1016/S0008-6215(00)00064-1; PMID: 10990029
  • Saitô H, Yokoi M. A 13C NMR study on collagens in the solid state: hydration/dehydration-induced conformational change of collagen and detection of internal motions. J Biochem 1992; 111:376 - 82; PMID: 1587801
  • Reichert D, Pascui O, deAzevedo ER, Bonagamba TJ, Arnold K, Huster D. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magn Reson Chem 2004; 42:276 - 84; http://dx.doi.org/10.1002/mrc.1334; PMID: 14745808
  • deAzevedo ER, Ayrosa AM, Faria GC, Cervantes HJ, Huster D, Bonagamba TJ, et al. The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR. Magn Reson Chem 2010; 48:704 - 11; http://dx.doi.org/10.1002/mrc.2653; PMID: 20641133
  • Zhu P, Xu J, Sahar N, Morris MD, Kohn DH, Ramamoorthy A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J Am Chem Soc 2009; 131:17064 - 5; http://dx.doi.org/10.1021/ja9081028; PMID: 19894735
  • Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 2010; 107:22425 - 9; http://dx.doi.org/10.1073/pnas.1009219107; PMID: 21127269
  • Rai RK, Sinha N. Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J Phys Chem C 2011; 115:14219 - 27; http://dx.doi.org/10.1021/jp2025768
  • Xu J, Zhu P, Morris MD, Ramamoorthy A. Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage. J Phys Chem B 2011; 115:9948 - 54; http://dx.doi.org/10.1021/jp205663z; PMID: 21786810
  • Huster D, Naji L, Schiller J, Arnold K. Dynamics of the biopolymers in articular cartilage studied by magic angle spinning NMR. Appl Magn Reson 2004; 27:471 - 87; http://dx.doi.org/10.1007/BF03166744
  • Schulz J, Pretzsch M, Khalaf I, Deiwick A, Scheidt HA, von Salis-Soglio G, et al. Quantitative monitoring of extracellular matrix production in bone implants by 13C and 31P solid-state NMR spectroscopy. Calcif Tissue Int 2007; 80:275 - 85; http://dx.doi.org/10.1007/s00223-007-9007-3; PMID: 17401595
  • Schulz R, Höhle S, Zernia G, Zscharnack M, Schiller J, Bader A, et al. Analysis of extracellular matrix production in artificial cartilage constructs by histology, immunocytochemistry, mass spectrometry, and NMR spectroscopy. J Nanosci Nanotechnol 2006; 6:2368 - 81; http://dx.doi.org/10.1166/jnn.2006.506; PMID: 17037843
  • Haberhauer M, Zernia G, Deiwick A, Pösel C, Bader A, Huster D, et al. Cartilage tissue engineering in plasma and whole blood scaffolds. Adv Mater 2008; 20:2061 - 7; http://dx.doi.org/10.1002/adma.200701344
  • Schiller J, Naji L, Huster D, Kaufmann J, Arnold K. 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage. MAGMA 2001; 13:19 - 27; http://dx.doi.org/10.1007/BF02668647; PMID: 11410393
  • Ling W, Regatte RR, Schweitzer ME, Jerschow A. Behavior of ordered sodium in enzymatically depleted cartilage tissue. Magn Reson Med 2006; 56:1151 - 5; http://dx.doi.org/10.1002/mrm.21062; PMID: 17029232
  • Shinar H, Navon G. Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure. NMR Biomed 2006; 19:877 - 93; http://dx.doi.org/10.1002/nbm.1068; PMID: 17075957
  • Shapiro EM, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 2002; 47:284 - 91; http://dx.doi.org/10.1002/mrm.10054; PMID: 11810671
  • Laffargue P, Hildebrand HF, Rtaimate M, Frayssinet P, Amoureux JP, Marchandise X. Evaluation of human recombinant bone morphogenetic protein-2-loaded tricalcium phosphate implants in rabbits’ bone defects. Bone 1999; 25:Suppl 55S - 8S; http://dx.doi.org/10.1016/S8756-3282(99)00134-9; PMID: 10458276
  • Marchandise X, Belgrand P, Legrand AP. Solid-state 31P NMR spectroscopy of bone and bone substitutes. Magn Reson Med 1992; 28:1 - 8; http://dx.doi.org/10.1002/mrm.1910280102; PMID: 1331696
  • Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. Oxford: Clarendon Press, 1991.
  • Baker DG, Schumacher HR Jr., Wolf GL. Nuclear magnetic resonance evaluation of synovial fluid and articular tissues. J Rheumatol 1985; 12:1062 - 5; PMID: 4093913
  • Xia Y, Farquhar T, Burton-Wurster N, Vernier-Singer M, Lust G, Jelinski LW. Self-diffusion monitors degraded cartilage. Arch Biochem Biophys 1995; 323:323 - 8; http://dx.doi.org/10.1006/abbi.1995.9958; PMID: 7487094
  • Lüsse S, Knauss R, Werner A, Gründer W, Arnold K. Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn Reson Med 1995; 33:483 - 9; http://dx.doi.org/10.1002/mrm.1910330405; PMID: 7776878
  • Reiter DA, Lin PC, Fishbein KW, Spencer RG. Multicomponent T2 relaxation analysis in cartilage. Magn Reson Med 2009; 61:803 - 9; http://dx.doi.org/10.1002/mrm.21926; PMID: 19189393
  • Reiter DA, Roque RA, Lin PC, Doty SB, Pleshko N, Spencer RG. Improved specificity of cartilage matrix evaluation using multiexponential transverse relaxation analysis applied to pathomimetically degraded cartilage. NMR Biomed 2011; 24:1286 - 94; http://dx.doi.org/10.1002/nbm.1690; PMID: 21465593
  • Reiter DA, Irrechukwu O, Lin PC, Moghadam S, Von Thaer S, Pleshko N, et al. Improved MR-based characterization of engineered cartilage using multiexponential T2 relaxation and multivariate analysis. NMR Biomed 2012; 25:476 - 88; http://dx.doi.org/10.1002/nbm.1804; PMID: 22287335
  • Zheng S, Xia Y. Multi-components of T2 relaxation in ex vivo cartilage and tendon. J Magn Reson 2009; 198:188 - 96; http://dx.doi.org/10.1016/j.jmr.2009.02.005; PMID: 19269868
  • McGee MP, Morykwas M, Levi-Polyachenko N, Argenta L. Swelling and pressure-volume relationships in the dermis measured by osmotic-stress technique. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1907 - 13; http://dx.doi.org/10.1152/ajpregu.90777.2008; PMID: 19321700
  • Nieminen MT, Töyräs J, Rieppo J, Hakumäki JM, Silvennoinen J, Helminen HJ, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 2000; 43:676 - 81; http://dx.doi.org/10.1002/(SICI)1522-2594(200005)43:5<676::AID-MRM9>3.0.CO;2-X; PMID: 10800032
  • Gründer W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med 1998; 39:376 - 82; http://dx.doi.org/10.1002/mrm.1910390307; PMID: 9498593
  • Spriet M, McKnight A. Characterization of the magic angle effect in the equine deep digital flexor tendon using a low-field magnetic resonance system. Vet Radiol Ultrasound 2009; 50:32 - 6; http://dx.doi.org/10.1111/j.1740-8261.2008.01486.x; PMID: 19241751
  • Schiller J, Naji L, Trampel R, Ngwa W, Knauss R, Arnold K. Pulsed-field gradient-nuclear magnetic resonance (PFG NMR) to measure the diffusion of ions and polymers in cartilage: applications in joint diseases. Methods Mol Med 2004; 101:287 - 302; PMID: 15299221
  • Naji L, Schiller J, Kaufmann J, Stallmach F, Kärger J, Arnold K. The gel-forming behaviour of dextran in the presence of KCl: a quantitative 13C and pulsed field gradient (PFG) NMR study. Biophys Chem 2003; 104:131 - 40; http://dx.doi.org/10.1016/S0301-4622(02)00362-9; PMID: 12834833
  • Ngwa W, Geier O, Stallmach F, Naji L, Schiller J, Arnold K. Cation diffusion in cartilage measured by pulsed field gradient NMR. Eur Biophys J 2002; 31:73 - 80; http://dx.doi.org/10.1007/s002490100184; PMID: 12046899
  • Trampel R, Schiller J, Naji L, Stallmach F, Kärger J, Arnold K. Self-diffusion of polymers in cartilage as studied by pulsed field gradient NMR. Biophys Chem 2002; 97:251 - 60; http://dx.doi.org/10.1016/S0301-4622(02)00078-9; PMID: 12050014
  • Mohamed EE, Gröger S, Schiller J, Stallmach F, Kärger J, Arnold K. The self-diffusion behavior of polyethylene glycol in cartilageas studied by pulsed-field gradient NMR. Phys Med 2005; 21:69 - 73; http://dx.doi.org/10.1016/S1120-1797(05)80022-5; PMID: 18348848
  • de Gennes PG. Scaling concepts in polymer physics. Ithaca: Cornell University Press; 1979.
  • Imberty A, Lortat-Jacob H, Pérez S. Structural view of glycosaminoglycan-protein interactions. Carbohydr Res 2007; 342:430 - 9; http://dx.doi.org/10.1016/j.carres.2006.12.019; PMID: 17229412
  • Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72:455 - 82; http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x; PMID: 19090915
  • Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, et al. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 2012; 22:134 - 45; http://dx.doi.org/10.1093/glycob/cwr120; PMID: 21873605
  • Nauman JV, Campbell PG, Lanni F, Anderson JL. Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels. Biophys J 2007; 92:4444 - 50; http://dx.doi.org/10.1529/biophysj.106.102699; PMID: 17400703
  • Thorne RG, Hrabetová S, Nicholson C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 2004; 92:3471 - 81; http://dx.doi.org/10.1152/jn.00352.2004; PMID: 15269225
  • Schiller J, Süss R, Arnhold J, Fuchs B, Lessig J, Müller M, et al. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 2004; 43:449 - 88; http://dx.doi.org/10.1016/j.plipres.2004.08.001; PMID: 15458815
  • Mikami T, Aoki M, Kimura T. The application of mass spectrometry to proteomics and metabolomics in biomarker discovery and drug development. Curr Mol Pharmacol 2012; In press PMID: 22122469
  • Baldwin MA. Mass spectrometers for the analysis of biomolecules. Methods Enzymol 2005; 402:3 - 48; http://dx.doi.org/10.1016/S0076-6879(05)02001-X; PMID: 16401505
  • Cho A, Normile D. Nobel Prize in Chemistry. Mastering macromolecules. Science 2002; 298:527 - 8; http://dx.doi.org/10.1126/science.298.5593.527b; PMID: 12386315
  • Zaia J. Principles of mass spectrometry of glycosaminoglycans. J Biomacromol Mass Spectrom. 2005; 1:3 - 36
  • Honda A, Suzuki Y, Suzuki K. Mass probe-assisted ionization method for total analysis of biomolecules with electrospray ionization-mass spectrometry. Chem Rec 2006; 6:100 - 6; http://dx.doi.org/10.1002/tcr.20075; PMID: 16607635
  • Fuchs B, Arnold K, Schiller J. Mass spectrometry of biological molecules. In: Meyers, RA, ed. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons Ltd., 2008: 1-39.
  • Hillenkamp F, Peter-Katalinic J. MALDI MS—A Practical Guide to Instrumentation. Methods and Application. Wiley-VCH: Weinheim, 2007.
  • Knochenmuss R. Ion formation mechanisms in UV-MALDI. Analyst 2006; 131:966 - 86; http://dx.doi.org/10.1039/b605646f; PMID: 17047796
  • Schiller J, Arnhold J, Benard S, Reichl S, Arnold K. Cartilage degradation by hyaluronate lyase and chondroitin ABC lyase: a MALDI-TOF mass spectrometric study. Carbohydr Res 1999; 318:116 - 22; http://dx.doi.org/10.1016/S0008-6215(99)00063-4; PMID: 10576924
  • Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, et al. Clathrate nanostructures for mass spectrometry. Nature 2007; 449:1033 - 6; http://dx.doi.org/10.1038/nature06195; PMID: 17960240
  • Kim SH, Lee JH, Yun SY, Yoo JS, Jun CH, Chung KY, et al. Reaction monitoring of succinylation of collagen with matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 2000; 14:2125 - 8; http://dx.doi.org/10.1002/1097-0231(20001130)14:22<2125::AID-RCM141>3.0.CO;2-6; PMID: 11114019
  • Hambleton J, Shakespeare PG. Thermal damage to skin collagen. Burns 1991; 17:209 - 12; http://dx.doi.org/10.1016/0305-4179(91)90106-Q; PMID: 1892553
  • Dreisewerd K, Rohlfing A, Spottke B, Urbanke C, Henkel W. Characterization of whole fibril-forming collagen proteins of types I, III, and V from fetal calf skin by infrared matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 2004; 76:3482 - 91; http://dx.doi.org/10.1021/ac049928q; PMID: 15228314
  • Henkel W, Dreisewerd K. Cyanogen bromide peptides of the fibrillar collagens I, III, and V and their mass spectrometric characterization: detection of linear peptides, peptide glycosylation, and cross-linking peptides involved in formation of homo- and heterotypic fibrils. J Proteome Res 2007; 6:4269 - 89; http://dx.doi.org/10.1021/pr070318r; PMID: 17939700
  • Zhang G, Sun A, Li W, Liu T, Su Z. Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. J Chromatogr A 2006; 1114:274 - 7; http://dx.doi.org/10.1016/j.chroma.2006.03.039; PMID: 16600269
  • Nimptsch A, Schibur S, Ihling C, Sinz A, Riemer T, Huster D, et al. Quantitative analysis of denatured collagen by collagenase digestion and subsequent MALDI-TOF mass spectrometry. Cell Tissue Res 2011; 343:605 - 17; http://dx.doi.org/10.1007/s00441-010-1113-2; PMID: 21274570
  • Prabhakar V, Capila I, Sasisekharan R. The structural elucidation of glycosaminoglycans. Methods Mol Biol 2009; 534:147 - 56; http://dx.doi.org/10.1007/978-1-59745-022-5_11; PMID: 19277554
  • Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M. CS lyases: structure, activity, and applications in analysis and the treatment of diseases. Adv Pharmacol 2006; 53:187 - 215; http://dx.doi.org/10.1016/S1054-3589(05)53009-6; PMID: 17239767
  • Schiller J, Becher J, Möller S, Nimptzsch K, Riemer T, Schnabelrauch M. Synthesis and characterization of chemically modified glycosaminoglycans of the extracellular matrix. Mini Rev Org Chem 2010; 7:290 - 9
  • Laremore TN, Murugesan S, Park TJ, Avci FY, Zagorevski DV, Linhardt RJ. Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices. Anal Chem 2006; 78:1774 - 9; http://dx.doi.org/10.1021/ac051121q; PMID: 16536411
  • Laremore TN, Linhardt RJ. Improved matrix-assisted laser desorption/ionization mass spectrometric detection of glycosaminoglycan disaccharides as cesium salts. Rapid Commun Mass Spectrom 2007; 21:1315 - 20; http://dx.doi.org/10.1002/rcm.2964; PMID: 17340574
  • Zaia J, Li XQ, Chan SY, Costello CE. Tandem mass spectrometric strategies for determination of sulfation positions and uronic acid epimerization in chondroitin sulfate oligosaccharides. J Am Soc Mass Spectrom 2003; 14:1270 - 81; http://dx.doi.org/10.1016/S1044-0305(03)00541-5; PMID: 14597117
  • Böhme J, Anderegg U, Nimptsch A, Nimptsch K, Hacker M, Schulz-Siegmund M, et al. De novo biosynthesis of glycosaminoglycans in the extracellular matrix of skin studied by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 2012; 421:791 - 3; http://dx.doi.org/10.1016/j.ab.2011.11.002; PMID: 22138347
  • Yamada H, Miyauchi S, Hotta H, Morita M, Yoshihara Y, Kikuchi T, et al. Levels of chondroitin sulfate isomers in synovial fluid of patients with hip osteoarthritis. J Orthop Sci 1999; 4:250 - 4; http://dx.doi.org/10.1007/s007760050100; PMID: 10436271
  • Nimptsch K, Süss R, Riemer T, Nimptsch A, Schnabelrauch M, Schiller J. Differently complex oligosaccharides can be easily identified by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry directly from a standard thin-layer chromatography plate. J Chromatogr A 2010; 1217:3711 - 5; http://dx.doi.org/10.1016/j.chroma.2010.04.005; PMID: 20434160
  • Fuchs B, Süß R, Nimptsch A, Schiller J. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly combined with thin-layer chromatography (TLC)—A review of the current state. Chromatographia 2009; 69:95 - 105; http://dx.doi.org/10.1365/s10337-008-0661-z
  • Zhang Z, Xie J, Zhang F, Linhardt RJ. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal Biochem 2007; 371:118 - 20; http://dx.doi.org/10.1016/j.ab.2007.07.003; PMID: 17679101
  • Tissot B, Gasiunas N, Powell AK, Ahmed Y, Zhi ZL, Haslam SM, et al. Towards GAG glycomics: analysis of highly sulfated heparins by MALDI-TOF mass spectrometry. Glycobiology 2007; 17:972 - 82; http://dx.doi.org/10.1093/glycob/cwm072; PMID: 17623722
  • Nimptsch K, Süß R, Schnabelrauch M, Nimptsch A, Schiller J. Positive ion MALDI-TOF mass spectra are more suitable than negative ion spectra to characterize sulphated glycosaminoglycans. Int J Mass Spectrom 2012; 310:72 - 6; http://dx.doi.org/10.1016/j.ijms.2011.11.003