1,078
Views
32
CrossRef citations to date
0
Altmetric
Special Focus Review

Functional aspects of the interaction between interleukin-8 and sulfated glycosaminoglycans

, , &
Pages 142-148 | Published online: 01 Jul 2012

References

  • Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, Baggiolini M, et al. Neutrophil activation by monomeric interleukin-8. Science 1994; 264:90 - 2; http://dx.doi.org/10.1126/science.8140420; PMID: 8140420
  • Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002; 82:521 - 33; http://dx.doi.org/10.1038/labinvest.3780446; PMID: 12003992
  • Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 2006; 20:9 - 22; http://dx.doi.org/10.1096/fj.05-4682rev; PMID: 16394262
  • Walker A, Ward C, Taylor EL, Dransfield I, Hart SP, Haslett C, et al. Regulation of neutrophil apoptosis and removal of apoptotic cells. Curr Drug Targets Inflamm Allergy 2005; 4:447 - 54; http://dx.doi.org/10.2174/1568010054526278; PMID: 16101521
  • Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 2006; 129:1673 - 82; http://dx.doi.org/10.1378/chest.129.6.1673; PMID: 16778289
  • Krysko DV, D’Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006; 11:1709 - 26; http://dx.doi.org/10.1007/s10495-006-9527-8; PMID: 16951923
  • Erwig LP, Henson PM. Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 2007; 171:2 - 8; http://dx.doi.org/10.2353/ajpath.2007.070135; PMID: 17591947
  • Franz S, Hoeve MA, Wickert S, Janko C, Dransfield I. Clearance of apo Nph induces an immunosuppressive response in pro-inflammatory type-1 and anti-inflammatory type-2 MPhi. Autoimmunity 2009; 42:275 - 7; http://dx.doi.org/10.1080/08916930902828080; PMID: 19811275
  • Arnhold J, Flemmig J. Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92 - 106; http://dx.doi.org/10.1016/j.abb.2010.04.008; PMID: 20399194
  • Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM. Three-dimensional structure of interleukin 8 in solution. Biochemistry 1990; 29:1689 - 96; http://dx.doi.org/10.1021/bi00459a004; PMID: 2184886
  • Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM. Determination of the secondary structure of interleukin-8 by nuclear magnetic resonance spectroscopy. J Biol Chem 1989; 264:18907 - 11; PMID: 2681204
  • Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992; 307:97 - 101; http://dx.doi.org/10.1016/0014-5793(92)80909-Z; PMID: 1639201
  • Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, et al. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci U S A 1991; 88:502 - 6; http://dx.doi.org/10.1073/pnas.88.2.502; PMID: 1988949
  • Grasberger BL, Gronenborn AM, Clore GM. Analysis of the backbone dynamics of interleukin-8 by 15N relaxation measurements. J Mol Biol 1993; 230:364 - 72; http://dx.doi.org/10.1006/jmbi.1993.1152; PMID: 8464050
  • Rajarathnam K, Clark-Lewis I, Dewald B, Baggiolini M, Sykes BD. 1H NMR evidence that Glu-38 interacts with the N-terminal functional domain in interleukin-8. FEBS Lett 1996; 399:43 - 6; http://dx.doi.org/10.1016/S0014-5793(96)01277-X; PMID: 8980116
  • Padrines M, Wolf M, Walz A, Baggiolini M. Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett 1994; 352:231 - 5; http://dx.doi.org/10.1016/0014-5793(94)00952-X; PMID: 7925979
  • Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med 2008; 205:2085 - 97; http://dx.doi.org/10.1084/jem.20080305; PMID: 18710930
  • Mortier A, Gouwy M, Van Damme J, Proost P. Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Exp Cell Res 2011; 317:642 - 54; http://dx.doi.org/10.1016/j.yexcr.2010.11.016; PMID: 21146523
  • Burrows SD, Doyle ML, Murphy KP, Franklin SG, White JR, Brooks I, et al. Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry 1994; 33:12741 - 5; http://dx.doi.org/10.1021/bi00209a002; PMID: 7947677
  • Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, et al. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. PLoS One 2010; 5:e11754; http://dx.doi.org/10.1371/journal.pone.0011754; PMID: 20668677
  • Clark-Lewis I, Schumacher C, Baggiolini M, Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 1991; 266:23128 - 34; PMID: 1744111
  • Rajarathnam K, Clark-Lewis I, Sykes BD. 1H NMR studies of interleukin 8 analogs: characterization of the domains essential for function. Biochemistry 1994; 33:6623 - 30; http://dx.doi.org/10.1021/bi00187a032; PMID: 8204599
  • Clark-Lewis I, Dewald B, Loetscher M, Moser B, Baggiolini M. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem 1994; 269:16075 - 81; PMID: 8206907
  • Gerber N, Lowman H, Artis DR, Eigenbrot C. Receptor-binding conformation of the “ELR” motif of IL-8: X-ray structure of the L5C/H33C variant at 2.35 A resolution. Proteins 2000; 38:361 - 7; http://dx.doi.org/10.1002/(SICI)1097-0134(20000301)38:4<361::AID-PROT2>3.0.CO;2-0; PMID: 10707023
  • Mortier A, Van Damme J, Proost P. Regulation of chemokine activity by posttranslational modification. Pharmacol Ther 2008; 120:197 - 217; http://dx.doi.org/10.1016/j.pharmthera.2008.08.006; PMID: 18793669
  • Kuschert GSV, Coulin F, Power CA, Proudfoot AEI, Hubbard RE, Hoogewerf AJ, et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 1999; 38:12959 - 68; http://dx.doi.org/10.1021/bi990711d; PMID: 10504268
  • Lortat-Jacob H, Grosdidier A, Imberty A. Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A 2002; 99:1229 - 34; http://dx.doi.org/10.1073/pnas.032497699; PMID: 11830659
  • Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, et al. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 2012; 22:134 - 45; http://dx.doi.org/10.1093/glycob/cwr120; PMID: 21873605
  • Hébert CA, Vitangcol RV, Baker JB. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 1991; 266:18989 - 94; PMID: 1918013
  • Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, et al. Structure-activity relationships of chemokines. J Leukoc Biol 1995; 57:703 - 11; PMID: 7759949
  • Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253:1278 - 80; http://dx.doi.org/10.1126/science.1840701; PMID: 1840701
  • Morohashi H, Miyawaki T, Nomura H, Kuno K, Murakami S, Matsushima K, et al. Expression of both types of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. J Leukoc Biol 1995; 57:180 - 7; PMID: 7829970
  • Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52:145 - 76; PMID: 10699158
  • Lee JS, Frevert CW, Wurfel MM, Peiper SC, Wong VA, Ballman KK, et al. Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J Immunol 2003; 170:5244 - 51; PMID: 12734373
  • Bergin DA, Reeves EP, Meleady P, Henry M, McElvaney OJ, Carroll TP, et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest 2010; 120:4236 - 50; http://dx.doi.org/10.1172/JCI41196; PMID: 21060150
  • Hoogewerf AJ, Kuschert GSV, Proudfoot AEI, Borlat F, Clark-Lewis I, Power CA, et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 1997; 36:13570 - 8; http://dx.doi.org/10.1021/bi971125s; PMID: 9354625
  • Kjellén L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60:443 - 75; http://dx.doi.org/10.1146/annurev.bi.60.070191.002303; PMID: 1883201
  • Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67:609 - 52; http://dx.doi.org/10.1146/annurev.biochem.67.1.609; PMID: 9759499
  • Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71:435 - 71; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135458; PMID: 12045103
  • Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275:29923 - 6; http://dx.doi.org/10.1074/jbc.R000008200; PMID: 10931855
  • Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, et al. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 2006; 7:2; http://dx.doi.org/10.1186/1471-2091-7-2; PMID: 16417632
  • Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 6:633 - 43; http://dx.doi.org/10.1038/nri1918; PMID: 16917509
  • Iozzo RV. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 2001; 108:165 - 7; PMID: 11457866
  • Rops AL, van der Vlag J, Lensen JF, Wijnhoven TJ, van den Heuvel LP, van Kuppevelt TH, et al. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int 2004; 65:768 - 85; http://dx.doi.org/10.1111/j.1523-1755.2004.00451.x; PMID: 14871397
  • Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 1991; 71:481 - 539; PMID: 2006221
  • Couchman JR, Woods A. Syndecans, signaling, and cell adhesion. J Cell Biochem 1996; 61:578 - 84; http://dx.doi.org/10.1002/(SICI)1097-4644(19960616)61:4<578::AID-JCB11>3.0.CO;2-C; PMID: 8806081
  • Stringer SE, Gallagher JT. Heparan sulphate. Int J Biochem Cell Biol 1997; 29:709 - 14; http://dx.doi.org/10.1016/S1357-2725(96)00170-7; PMID: 9251237
  • Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404:725 - 8; http://dx.doi.org/10.1038/35008000; PMID: 10783877
  • Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72:455 - 82; http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x; PMID: 19090915
  • Schlorke D, Thomas L, Samsonov SA, Huster D, Arnhold J, Pichert A. The influence of glycosaminoglycans on IL-8-mediated functions of neutrophils. Carbohydr Res 2012; 356:196 - 203; http://dx.doi.org/10.1016/j.carres.2012.02.025; PMID: 22444322
  • Kuschert GS, Hoogewerf AJ, Proudfoot AE, Chung CW, Cooke RM, Hubbard RE, et al. Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry 1998; 37:11193 - 201; http://dx.doi.org/10.1021/bi972867o; PMID: 9698365
  • Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ. A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Proteins 2004; 54:768 - 75; http://dx.doi.org/10.1002/prot.10590; PMID: 14997572
  • Bitomsky W, Wade RC. Docking of glycosaminoglycans to heparin-binding proteins: validation for aFGF, bFGF, and antithrombin and application to IL-8. J Am Chem Soc 1999; 121:3004 - 13; http://dx.doi.org/10.1021/ja983319g
  • David R, Günther R, Baumann L, Lühmann T, Seebach D, Hofmann HJ, et al. Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. J Am Chem Soc 2008; 130:15311 - 7; http://dx.doi.org/10.1021/ja802453x; PMID: 18942784
  • Spillmann D, Witt D, Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 1998; 273:15487 - 93; http://dx.doi.org/10.1074/jbc.273.25.15487; PMID: 9624135
  • Day AJ, de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation?. Trends Immunol 2005; 26:637 - 43; http://dx.doi.org/10.1016/j.it.2005.09.009; PMID: 16214414
  • Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11:1173 - 9; http://dx.doi.org/10.1038/nm1315; PMID: 16244651
  • Bollyky PL, Falk BA, Wu RP, Buckner JH, Wight TN, Nepom GT. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J Leukoc Biol 2009; 86:567 - 72; http://dx.doi.org/10.1189/jlb.0109001; PMID: 19401397
  • Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, et al. Modifications of hyaluronan influence the interaction with human bone morphogenetic protein-4 (hBMP-4). Biomacromolecules 2009; 10:3290 - 7; http://dx.doi.org/10.1021/bm9008827; PMID: 19894734
  • Hempel U, Hintze V, Möller S, Schnabelrauch M, Scharnweber D, Dieter P. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater 2012; 8:659 - 66; http://dx.doi.org/10.1016/j.actbio.2011.10.026; PMID: 22061106
  • Kunze R, Rösler M, Möller S, Schnabelrauch M, Riemer T, Hempel U, et al. Sulfated hyaluronan derivatives reduce the proliferation rate of primary rat calvarial osteoblasts. Glycoconj J 2010; 27:151 - 8; http://dx.doi.org/10.1007/s10719-009-9270-9; PMID: 19941065
  • Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 1997; 91:385 - 95; http://dx.doi.org/10.1016/S0092-8674(00)80422-5; PMID: 9363947
  • Carveth HJ, Bohnsack JF, McIntyre TM, Baggiolini M, Prescott SM, Zimmerman GA. Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem Biophys Res Commun 1989; 162:387 - 93; http://dx.doi.org/10.1016/0006-291X(89)92009-3; PMID: 2665743
  • Tanino Y, Coombe DR, Gill SE, Kett WC, Kajikawa O, Proudfoot AE, et al. Kinetics of chemokine-glycosaminoglycan interactions control neutrophil migration into the airspaces of the lungs. J Immunol 2010; 184:2677 - 85; http://dx.doi.org/10.4049/jimmunol.0903274; PMID: 20124102
  • Ramdin L, Perks B, Sheron N, Shute JK. Regulation of interleukin-8 binding and function by heparin and alpha2-macroglobulin. Clin Exp Allergy 1998; 28:616 - 24; http://dx.doi.org/10.1046/j.1365-2222.1998.00283.x; PMID: 9645599
  • Webb LMC, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci U S A 1993; 90:7158 - 62; http://dx.doi.org/10.1073/pnas.90.15.7158; PMID: 8346230
  • Lomakina EB, Waugh RE. Signaling and dynamics of activation of LFA-1 and Mac-1 by immobilized IL-8. Cell Mol Bioeng 2010; 3:106 - 16; http://dx.doi.org/10.1007/s12195-009-0099-x; PMID: 21532911
  • Sengeløv H, Kjeldsen L, Diamond MS, Springer TA, Borregaard N. Subcellular localization and dynamics of Mac-1 (α m β 2) in human neutrophils. J Clin Invest 1993; 92:1467 - 76; http://dx.doi.org/10.1172/JCI116724; PMID: 8376598
  • Detmers PA, Lo SK, Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1990; 171:1155 - 62; http://dx.doi.org/10.1084/jem.171.4.1155; PMID: 1969919
  • Ma YQ, Plow EF, Geng JG. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils. Blood 2004; 104:2549 - 56; http://dx.doi.org/10.1182/blood-2004-03-1108; PMID: 15217824
  • Seo SM, McIntire LV, Smith CW. Effects of IL-8, Gro-α, and LTB(4) on the adhesive kinetics of LFA-1 and Mac-1 on human neutrophils. Am J Physiol Cell Physiol 2001; 281:C1568 - 78; PMID: 11600420
  • Heit B, Colarusso P, Kubes P. Fundamentally different roles for LFA-1, Mac-1 and α4-integrin in neutrophil chemotaxis. J Cell Sci 2005; 118:5205 - 20; http://dx.doi.org/10.1242/jcs.02632; PMID: 16249234
  • Goger B, Halden Y, Rek A, Mösl R, Pye D, Gallagher J, et al. Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 2002; 41:1640 - 6; http://dx.doi.org/10.1021/bi011944j; PMID: 11814358
  • Witt DP, Lander AD. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994; 4:394 - 400; http://dx.doi.org/10.1016/S0960-9822(00)00088-9; PMID: 7922353
  • Frevert CW, Kinsella MG, Vathanaprida C, Goodman RB, Baskin DG, Proudfoot A, et al. Binding of interleukin-8 to heparan sulfate and chondroitin sulfate in lung tissue. Am J Respir Cell Mol Biol 2003; 28:464 - 72; http://dx.doi.org/10.1165/rcmb.2002-0084OC; PMID: 12654635