588
Views
8
CrossRef citations to date
0
Altmetric
Report

Biomimetic evaluation of β tricalcium phosphate prepared by hot isostatic pressing

, , , &
Pages 103-113 | Published online: 01 Jul 2012

References

  • Lange T, Schilling AF, Peters F, Mujas J, Wicklein D, Amling M. Size dependent induction of proinflammatory cytokines and cytotoxicity of particulate beta-tricalciumphosphate in vitro. Biomaterials 2011; 32:4067 - 75; http://dx.doi.org/10.1016/j.biomaterials.2011.02.039; PMID: 21421269
  • Knabe C, Koch C, Rack A, Stiller M. Effect of beta-tricalcium phosphate particles with varying porosity on osteogenesis after sinus floor augmentation in humans. Biomaterials 2008; 29:2249 - 58; http://dx.doi.org/10.1016/j.biomaterials.2008.01.026; PMID: 18289665
  • Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I, et al. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 2006; 38:555 - 63; http://dx.doi.org/10.1016/j.bone.2005.10.016; PMID: 16376162
  • Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 2010; 46:386 - 95; http://dx.doi.org/10.1016/j.bone.2009.09.031; PMID: 19800045
  • Yang Y, Zhao Y, Tang G, Li H, Yuan X, Fan Y. In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate(PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym Degrad Stabil 2008; 93:1838 - 45; http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.007
  • Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, Vallet-Regí M, Portolés MT. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials 2009; 30:45 - 51; http://dx.doi.org/10.1016/j.biomaterials.2008.09.012; PMID: 18838165
  • Arnold U, Lindenhayn K, Perka C. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials 2002; 23:2303 - 10; http://dx.doi.org/10.1016/S0142-9612(01)00364-7; PMID: 12013177
  • Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regí MF. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. Acta Biomater 2009; 5:2738 - 51; http://dx.doi.org/10.1016/j.actbio.2009.03.025; PMID: 19394904
  • Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, et al. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Biomaterials 2004; 25:393 - 401; http://dx.doi.org/10.1016/S0142-9612(03)00538-6; PMID: 14585687
  • Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials 1997; 18:1037 - 41; http://dx.doi.org/10.1016/S0142-9612(97)00036-7; PMID: 9239465
  • Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size β-tricalcium phosphate scaffold. Tissue Eng 2006; 12:3535 - 43; http://dx.doi.org/10.1089/ten.2006.12.3535; PMID: 17518689
  • Zhao J, Watanabe T, Bhawal UK, Kubota E, Abiko Y. Transcriptome analysis of β-TCP implanted in dog mandible. Bone 2011; 48:864 - 77; http://dx.doi.org/10.1016/j.bone.2010.11.019; PMID: 21134491
  • Zhang M, Wang K, Shi Z, Yang H, Dang X, Wang W. Osteogenesis of the construct combined BMSCs with beta-TCP in rat. J Plast Reconstr Aesthet Surg 2010; 63:227 - 32; http://dx.doi.org/10.1016/j.bjps.2008.11.017; PMID: 19091642
  • Chappard D, Guillaume B, Mallet R, Pascaretti-Grizon F, Baslé MF, Libouban H. Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 2010; 41:321 - 6; http://dx.doi.org/10.1016/j.micron.2009.12.005; PMID: 20060730
  • da Silva HM, Mateescu M, Ponche A, Damia C, Champion E, Soares G, et al. Surface transformation of silicon-doped hydroxyapatite immersed in culture medium under dynamic and static conditions. Colloids Surf B Biointerfaces 2010; 75:349 - 55; http://dx.doi.org/10.1016/j.colsurfb.2009.09.009; PMID: 19800204
  • da Silva HM, Mateescu M, Damia C, Champion E, Soares G, Anselme K. Importance of dynamic culture for evaluating osteoblast activity on dense silicon-substituted hydroxyapatite. Colloids Surf B Biointerfaces 2010; 80:138 - 44; http://dx.doi.org/10.1016/j.colsurfb.2010.05.040; PMID: 20579858
  • Tanimoto Y, Hayakawa T, Sakae T, Nemoto K. Characterization and bioactivity of tape-cast and sintered TCP sheets. J Biomed Mater Res A 2006; 76:571 - 9; http://dx.doi.org/10.1002/jbm.a.30558; PMID: 16278874
  • Lu HB, Campbell CT, Graham DJ, Ratner BD. Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 2000; 72:2886 - 94; http://dx.doi.org/10.1021/ac990812h; PMID: 10905323
  • Juhasz JA, Best SM, Auffret AD, Bonfield W. Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med 2008; 19:1823 - 9; http://dx.doi.org/10.1007/s10856-007-3344-7; PMID: 18157508
  • Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution?. Biomaterials 2009; 30:2175 - 9; http://dx.doi.org/10.1016/j.biomaterials.2009.01.008; PMID: 19176246
  • Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 2003; 24:4609 - 20; http://dx.doi.org/10.1016/S0142-9612(03)00355-7; PMID: 12951004
  • Rámila A, Vallet-Regí M. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials 2001; 22:2301 - 6; http://dx.doi.org/10.1016/S0142-9612(00)00419-1; PMID: 11456070
  • Radin S, Ducheyne P, Rothman B, Conti A. The effect of in vitro modeling conditions on the surface reactions of bioactive glass. J Biomed Mater Res 1997; 37:363 - 75; http://dx.doi.org/10.1002/(SICI)1097-4636(19971205)37:3<363::AID-JBM7>3.0.CO;2-J; PMID: 9368141
  • Radin S, Ducheyne P. Effect of serum proteins on solution-induced surface transformations of bioactive ceramics. J Biomed Mater Res 1996; 30:273 - 9; http://dx.doi.org/10.1002/(SICI)1097-4636(199603)30:3<273::AID-JBM1>3.0.CO;2-N; PMID: 8698689
  • Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials 2006; 27:2874 - 81; http://dx.doi.org/10.1016/j.biomaterials.2005.12.031; PMID: 16439012
  • Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater 2009; 5:1756 - 66; http://dx.doi.org/10.1016/j.actbio.2008.12.008; PMID: 19136321
  • Miyatake N, Kishimoto KN, Anada T, Imaizumi H, Itoi E, Suzuki O. Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics. Biomaterials 2009; 30:1005 - 14; http://dx.doi.org/10.1016/j.biomaterials.2008.10.058; PMID: 19027945
  • Eliaz N, Kopelovitch W, Burstein L, Kobayashi E, Hanawa T. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J Biomed Mater Res A 2009; 89:270 - 80; http://dx.doi.org/10.1002/jbm.a.32129; PMID: 18563813
  • Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials 2010; 31:1465 - 85; http://dx.doi.org/10.1016/j.biomaterials.2009.11.050; PMID: 19969343
  • Yeatts AB, Fisher JP. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 2011; 48:171 - 81; http://dx.doi.org/10.1016/j.bone.2010.09.138; PMID: 20932947
  • Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res 1994; 28:783 - 9; http://dx.doi.org/10.1002/jbm.820280705; PMID: 8083246
  • Suh H, Hwang YS, Lee JE, Han CD, Park JC. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane. Biomaterials 2001; 22:219 - 30; http://dx.doi.org/10.1016/S0142-9612(00)00177-0; PMID: 11197497
  • Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, Quarto R, et al. Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. J Biomed Mater Res A 2008; 86:411 - 9; http://dx.doi.org/10.1002/jbm.a.31607; PMID: 17969030
  • Descamps M, Hornez JC, Leriche A. Manufacture of hydroxyapatite beads for medical applications. J Eur Ceram Soc 2009; 29:2401 - 6; http://dx.doi.org/10.1016/j.jeurceramsoc.2008.06.008