2,426
Views
99
CrossRef citations to date
0
Altmetric
Special Focus Review

Nanostructured porous Si-based nanoparticles for targeted drug delivery

, &
Pages 296-312 | Published online: 01 Oct 2012

References

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69 - 90; http://dx.doi.org/10.3322/caac.20107; PMID: 21296855
  • Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2012. Ann Oncol 2012; 23:1044 - 52; http://dx.doi.org/10.1093/annonc/mds024; PMID: 22373539
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2:750 - 63; http://dx.doi.org/10.1038/nrc903; PMID: 12360278
  • Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 2010; 31:358 - 65; http://dx.doi.org/10.1016/j.biomaterials.2009.09.048; PMID: 19800114
  • Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15:842 - 50; http://dx.doi.org/10.1016/j.drudis.2010.08.006; PMID: 20727417
  • Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58:97 - 110; http://dx.doi.org/10.3322/CA.2007.0003; PMID: 18227410
  • Manasmita D, Debasish M, Maiti T, Basak A, Pramanik P. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotech 2008; 19:415101; http://dx.doi.org/10.1088/0957-4484/19/41/415101
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5:161 - 71; http://dx.doi.org/10.1038/nrc1566; PMID: 15738981
  • Hamidi M, Shahbazi MA, Rostamizadeh K. Copolymers: efficient carriers for intelligent nanoparticulate drug targeting and gene therapy. Macromol Biosci 2012; 12:144 - 64; http://dx.doi.org/10.1002/mabi.201100193; PMID: 22006795
  • Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011; 40:233 - 45; http://dx.doi.org/10.1039/c0cs00003e; PMID: 20886124
  • von Maltzahn G, Park JH, Lin KY, Singh N, Schwöppe C, Mesters R, et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 2011; 10:545 - 52; http://dx.doi.org/10.1038/nmat3049; PMID: 21685903
  • Park JH, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A 2010; 107:981 - 6; http://dx.doi.org/10.1073/pnas.0909565107; PMID: 20080556
  • Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007; 25:1159 - 64; http://dx.doi.org/10.1038/nbt1332; PMID: 17873867
  • Vallet-Regí M. Nanostructured mesoporous silica matrices in nanomedicine. J Intern Med 2010; 267:22 - 43; http://dx.doi.org/10.1111/j.1365-2796.2009.02190.x; PMID: 20059642
  • Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 2007; 46:7548 - 58; http://dx.doi.org/10.1002/anie.200604488; PMID: 17854012
  • Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010; 6:1952 - 67; http://dx.doi.org/10.1002/smll.200901789; PMID: 20690133
  • Santos HA, Bimbo LM, Lehto VP, Airaksinen AJ, Salonen J, Hirvonen J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol 2011; 8:228 - 49; http://dx.doi.org/10.2174/157016311796799053; PMID: 21291407
  • Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci 2008; 97:632 - 53; http://dx.doi.org/10.1002/jps.20999; PMID: 17546667
  • Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 2011; 44:979 - 89; http://dx.doi.org/10.1021/ar200077p; PMID: 21902173
  • Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012; 41:2590 - 605; http://dx.doi.org/10.1039/c1cs15246g; PMID: 22216418
  • Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials 2008; 29:4045 - 55; http://dx.doi.org/10.1016/j.biomaterials.2008.07.007; PMID: 18675454
  • Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 2011; 1810:361 - 73; http://dx.doi.org/10.1016/j.bbagen.2010.04.007; PMID: 20435096
  • Bimbo LM, Peltonen L, Hirvonen J, Santos HA. Toxicological Profile of Therapeutic Nanodelivery Systems. Curr Drug Metab 2012; 13:1068 - 86; PMID: 22380014
  • Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles--opportunities & challenges. Nanoscale 2010; 2:1870 - 83; http://dx.doi.org/10.1039/c0nr00156b; PMID: 20730166
  • Rosenholm JM, Sahlgren C, Lindén M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets 2011; 12:1166 - 86; http://dx.doi.org/10.2174/138945011795906624; PMID: 21443474
  • Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond) 2012; 7:111 - 20; http://dx.doi.org/10.2217/nnm.11.166; PMID: 22191780
  • Jaganathan H, Godin B. Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev 2012; In press http://dx.doi.org/10.1016/j.addr.2012.05.008; PMID: 22634160
  • Salonen J, Lehto V-P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 2008; 137:162 - 72; http://dx.doi.org/10.1016/j.cej.2007.09.001
  • Zhang J, Li X, Rosenholm JM, Gu HC. Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. J Colloid Interface Sci 2011; 361:16 - 24; http://dx.doi.org/10.1016/j.jcis.2011.05.038; PMID: 21689824
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24:1504 - 34; http://dx.doi.org/10.1002/adma.201104763; PMID: 22378538
  • Betty CA. Porous silicon: a resourceful material for nanotechnology. Recent Pat Nanotechnol 2008; 2:128 - 36; http://dx.doi.org/10.2174/187221008784534514; PMID: 19076047
  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 2008; 60:1266 - 77; http://dx.doi.org/10.1016/j.addr.2008.03.017; PMID: 18508154
  • Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther 2011; 19:1538 - 46; http://dx.doi.org/10.1038/mt.2011.105; PMID: 21629222
  • Kinnari P, Mäkilä E, Heikkilä T, Salonen J, Hirvonen J, Santos HA. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int J Pharm 2011; 414:148 - 56; http://dx.doi.org/10.1016/j.ijpharm.2011.05.021; PMID: 21601623
  • Santos HA, Salonen J, Bimbo LM, Lehto VP, Peltonen L, Hirvonen J. Mesoporous materials as controlled drug delivery formulations. J Drug Deliv Sci Tech 2011; 21:139 - 55
  • Bimbo LM, Mäkilä E, Laaksonen T, Lehto VP, Salonen J, Hirvonen J, et al. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 2011; 32:2625 - 33; http://dx.doi.org/10.1016/j.biomaterials.2010.12.011; PMID: 21194747
  • Bimbo LM, Mäkilä E, Raula J, Laaksonen T, Laaksonen P, Strommer K, et al. Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 2011; 32:9089 - 99; http://dx.doi.org/10.1016/j.biomaterials.2011.08.011; PMID: 21864895
  • Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Mäkilä E, Laaksonen T, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 2010; 4:3023 - 32; http://dx.doi.org/10.1021/nn901657w; PMID: 20509673
  • Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto VP, et al. ¹⁸F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 2011; 8:1799 - 806; http://dx.doi.org/10.1021/mp2001654; PMID: 21875120
  • Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AM, et al. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 2012; 33:3353 - 62; http://dx.doi.org/10.1016/j.biomaterials.2012.01.029; PMID: 22285465
  • Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, et al. Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 2012; 4:3184 - 92; http://dx.doi.org/10.1039/c2nr30397c; PMID: 22508528
  • Limnell T, Santos HA, Mäkilä E, Heikkilä T, Salonen J, Murzin DY, et al. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J Pharm Sci 2011; 100:3294 - 306; http://dx.doi.org/10.1002/jps.22577; PMID: 21520084
  • Limnell T, Heikkilä T, Santos HA, Sistonen S, Hellstén S, Laaksonen T, et al. Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. Int J Pharm 2011; 416:242 - 51; PMID: 21763766
  • Tang H, Guo J, Sun Y, Chang B, Ren Q, Yang W. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int J Pharm 2011; 421:388 - 96; http://dx.doi.org/10.1016/j.ijpharm.2011.10.013; PMID: 22001840
  • Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 2006; 128:14792 - 3; http://dx.doi.org/10.1021/ja0645943; PMID: 17105274
  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, et al. Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 2007; 3:89 - 95; http://dx.doi.org/10.1007/s12030-008-9003-3; PMID: 19936038
  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010; 6:1794 - 805; http://dx.doi.org/10.1002/smll.201000538; PMID: 20623530
  • Gu L, Park JH, Duong KH, Ruoslahti E, Sailor MJ. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 2010; 6:2546 - 52; http://dx.doi.org/10.1002/smll.201000841; PMID: 20814923
  • Wu J, Sailor MJ. Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater 2009; 19:733 - 41; http://dx.doi.org/10.1002/adfm.200800921
  • Yang X, Liu X, Liu Z, Pu F, Ren J, Qu X. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 2012; 24:2890 - 5; http://dx.doi.org/10.1002/adma.201104797; PMID: 22539076
  • Wang LS, Wu LC, Lu SY, Chang LL, Teng IT, Yang CM, et al. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 2010; 4:4371 - 9; http://dx.doi.org/10.1021/nn901376h; PMID: 20731423
  • Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2008; 2:2401 - 9; http://dx.doi.org/10.1021/nn800592q; PMID: 19206408
  • Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2009; 3:197 - 206; http://dx.doi.org/10.1021/nn800781r; PMID: 19206267
  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008; 60:1278 - 88; http://dx.doi.org/10.1016/j.addr.2008.03.012; PMID: 18514969
  • Park C, Oh K, Lee SC, Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed Engl 2007; 46:1455 - 7; http://dx.doi.org/10.1002/anie.200603404; PMID: 17221893
  • Luo Z, Cai K, Hu Y, Zhao L, Liu P, Duan L, et al. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem Int Ed Engl 2011; 50:640 - 3; http://dx.doi.org/10.1002/anie.201005061; PMID: 21226142
  • Schlossbauer A, Kecht J, Bein T. Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew Chem Int Ed Engl 2009; 48:3092 - 5; http://dx.doi.org/10.1002/anie.200805818; PMID: 19309022
  • Murakami K, Yu X, Watanabe S, Kato T, Inoue Y, Sugawara K. Synthesis of thermosensitive polymer/mesoporous silica composite and its temperature dependence of anion exchange property. J Colloid Interface Sci 2011; 354:771 - 6; http://dx.doi.org/10.1016/j.jcis.2010.10.040; PMID: 21056426
  • Zhu Y, Liu H, Li F, Ruan Q, Wang H, Fujiwara M, et al. Dipolar molecules as impellers achieving electric-field-stimulated release. J Am Chem Soc 2010; 132:1450 - 1; http://dx.doi.org/10.1021/ja907560y; PMID: 20078044
  • Hu SH, Liu TY, Huang HY, Liu DM, Chen SY. Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir 2008; 24:239 - 44; http://dx.doi.org/10.1021/la701570z; PMID: 18052081
  • Zhu Y, Meng W, Hanagata N. Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Trans 2011; 40:10203 - 8; http://dx.doi.org/10.1039/c1dt11114k; PMID: 21901222
  • Andrew JS, Anglin EJ, Wu EC, Chen MY, Cheng L, Freeman WR, et al. Sustained Release of a Monoclonal Antibody from Electrochemically Prepared Mesoporous Silicon Oxide. Adv Funct Mater 2010; 20:4168 - 74; http://dx.doi.org/10.1002/adfm.201000907; PMID: 21274422
  • Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, et al. Nanotechnology for breast cancer therapy. Biomed Microdevices 2009; 11:49 - 63; http://dx.doi.org/10.1007/s10544-008-9209-0; PMID: 18663578
  • Scanlon KJ. Cancer gene therapy: challenges and opportunities. Anticancer Res 2004; 24:2A 501 - 4; PMID: 15152950
  • Farrell D, Ptak K, Panaro NJ, Grodzinski P. Nanotechnology-based cancer therapeutics--promise and challenge--lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 2011; 28:273 - 8; http://dx.doi.org/10.1007/s11095-010-0214-7; PMID: 20814720
  • Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 2010; 624:25 - 37; http://dx.doi.org/10.1007/978-1-60761-609-2_3; PMID: 20217587
  • Lin YS, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 2010; 132:4834 - 42; http://dx.doi.org/10.1021/ja910846q; PMID: 20230032
  • He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 2009; 5:2722 - 9; http://dx.doi.org/10.1002/smll.200900923; PMID: 19780070
  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8:331 - 6; http://dx.doi.org/10.1038/nmat2398; PMID: 19234444
  • Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, et al. Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 2008; 9:53 - 7; http://dx.doi.org/10.1002/cbic.200700509; PMID: 17999392
  • Slowing II, Wu CW, Vivero-Escoto JL, Lin VS. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 2009; 5:57 - 62; http://dx.doi.org/10.1002/smll.200800926; PMID: 19051185
  • Liu J, Stace-Naughton A, Jiang X, Brinker CJ. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 2009; 131:1354 - 5; http://dx.doi.org/10.1021/ja808018y; PMID: 19173660
  • Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 2011; 10:389 - 97; http://dx.doi.org/10.1038/nmat2992; PMID: 21499315
  • He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 2010; 31:1085 - 92; http://dx.doi.org/10.1016/j.biomaterials.2009.10.046; PMID: 19880176
  • Moghimi SM, Hamad I. Liposome-mediated triggering of complement cascade. J Liposome Res 2008; 18:195 - 209; http://dx.doi.org/10.1080/08982100802309552; PMID: 18720195
  • He Q, Shi J, Chen F, Zhu M, Zhang L. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 2010; 31:3335 - 46; http://dx.doi.org/10.1016/j.biomaterials.2010.01.015; PMID: 20106517
  • Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31:438 - 48; http://dx.doi.org/10.1016/j.biomaterials.2009.09.060; PMID: 19800115
  • Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 2011; 5:5717 - 28; http://dx.doi.org/10.1021/nn2013904; PMID: 21630682
  • Tao Z, Toms B, Goodisman J, Asefa T. Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. ACS Nano 2010; 4:789 - 94; http://dx.doi.org/10.1021/nn9015345; PMID: 20131868
  • Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 2005; 19:2014 - 6; http://dx.doi.org/10.1096/fj.05-4288fje; PMID: 16230334
  • Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009; 5:1408 - 13; http://dx.doi.org/10.1002/smll.200900005; PMID: 19296554
  • Tao Z, Toms BB, Goodisman J, Asefa T. Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. Chem Res Toxicol 2009; 22:1869 - 80; http://dx.doi.org/10.1021/tx900276u; PMID: 19817448
  • Popat A, Liu J, Hu Q, Kennedy M, Peters B, Lu GQ, et al. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 2012; 4:970 - 5; http://dx.doi.org/10.1039/c2nr11691j; PMID: 22200056
  • Zhang H, Li Z, Xu P, Wu R, Wang L, Xiang Y, et al. Synthesis of novel mesoporous silica nanoparticles for loading and release of ibuprofen. J Control Release 2011; 152:Suppl 1 e38 - 9; http://dx.doi.org/10.1016/j.jconrel.2011.08.108; PMID: 22195911
  • Kiekens F, Eelen S, Verheyden L, Daems T, Martens J, Van Den Mooter G. Use of ordered mesoporous silica to enhance the oral bioavailability of ezetimibe in dogs. J Pharm Sci 2012; 101:1136 - 44; http://dx.doi.org/10.1002/jps.23016; PMID: 22190350
  • Gan Q, Dai D, Yuan Y, Qian J, Sha S, Shi J, et al. Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Biomed Microdevices 2012; 14:259 - 70; http://dx.doi.org/10.1007/s10544-011-9604-9; PMID: 22124885
  • Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007; 28:2959 - 66; http://dx.doi.org/10.1016/j.biomaterials.2007.03.006; PMID: 17397919
  • Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5:121 - 32; http://dx.doi.org/10.1038/nrm1315; PMID: 15040445
  • He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 2008; 80:9597 - 603; http://dx.doi.org/10.1021/ac801882g; PMID: 19007246
  • Taylor AE, Granger DN. Equivalent pore modeling: vesicles and channels. Fed Proc 1983; 42:2440 - 5; PMID: 6840295
  • Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 1988; 133:95 - 109; PMID: 2459969
  • Maeda H, Noguchi Y, Sato K, Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 1994; 85:331 - 4; http://dx.doi.org/10.1111/j.1349-7006.1994.tb02362.x; PMID: 7515384
  • Hon NK, Shaposhnik Z, Diebold ED, Tamanoi F, Jalali B. Tailoring the biodegradability of porous silicon nanoparticles. J Biomed Mater Res A 2012; In press http://dx.doi.org/10.1002/jbm.a.34294; PMID: 22767395
  • De Angelis F, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, et al. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale 2010; 2:2230 - 6; http://dx.doi.org/10.1039/c0nr00161a; PMID: 20835434
  • Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008; 47:8438 - 41; http://dx.doi.org/10.1002/anie.200802469; PMID: 18726979
  • Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 2010; 132:552 - 7; http://dx.doi.org/10.1021/ja905793q; PMID: 20017538
  • Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012; 8:212 - 20; http://dx.doi.org/10.1016/j.nano.2011.06.002; PMID: 21703996
  • Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging 2007; 11:94 - 7; PMID: 17435951
  • Steinbacher JL, Lathrop SA, Cheng K, Hillegass JM, Butnor KJ, Kauppinen RA, et al. Gd-labeled microparticles in MRI: in vivo imaging of microparticles after intraperitoneal injection. Small 2010; 6:2678 - 82; http://dx.doi.org/10.1002/smll.201001447; PMID: 21069757
  • Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011; 5:5390 - 9; http://dx.doi.org/10.1021/nn200365a; PMID: 21634407
  • Lee C-H, Cheng S-H, Wang Y-J, Chen Y-C, Chen N-T, Souris J, et al. Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Adv Funct Mater 2009; 19:215 - 22; http://dx.doi.org/10.1002/adfm.200800753
  • Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JA, et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010; 31:5564 - 74; http://dx.doi.org/10.1016/j.biomaterials.2010.03.048; PMID: 20417962
  • He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011; 7:271 - 80; http://dx.doi.org/10.1002/smll.201001459; PMID: 21213393
  • Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 2008; 47:7284 - 8; http://dx.doi.org/10.1002/anie.200801810; PMID: 18696519
  • van Schooneveld MM, Vucic E, Koole R, Zhou Y, Stocks J, Cormode DP, et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 2008; 8:2517 - 25; http://dx.doi.org/10.1021/nl801596a; PMID: 18624389
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3:16 - 20; http://dx.doi.org/10.1021/nn900002m; PMID: 19206243
  • Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 2008; 14:1310-6.
  • Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007; 9:257 - 88; http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025; PMID: 17439359
  • Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2010; 62:378 - 93; http://dx.doi.org/10.1016/j.addr.2009.11.011; PMID: 19922750
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56:1649 - 59; http://dx.doi.org/10.1016/j.addr.2004.02.014; PMID: 15350294
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, et al. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie 2010; 65:199 - 201; PMID: 20383940
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41:147 - 62; http://dx.doi.org/10.1016/S0169-409X(99)00062-9; PMID: 10699311
  • Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 2012; 423:509 - 15; http://dx.doi.org/10.1016/j.ijpharm.2011.11.045; PMID: 22178618
  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943 - 55; http://dx.doi.org/10.1016/j.addr.2011.05.021; PMID: 21679733
  • Hamdy S, Haddadi A, Ghotbi Z, Hung RW, Lavasanifar A. Part I: targeted particles for cancer immunotherapy. Curr Drug Deliv 2011; 8:261 - 73; PMID: 21453265
  • Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater 2012; 24:3981 - 7; http://dx.doi.org/10.1002/adma.201200776; PMID: 22689074
  • Falahati M, Saboury AA, Ma’mani L, Shafiee A, Rafieepour HA. The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme. Int J Biol Macromol 2012; 50:1048 - 54; http://dx.doi.org/10.1016/j.ijbiomac.2012.02.032; PMID: 22421216
  • Méndez J, Monteagudo A, Griebenow K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug Chem 2012; 23:698 - 704; http://dx.doi.org/10.1021/bc200301a; PMID: 22375899
  • Lim JS, Lee K, Choi JN, Hwang YK, Yun MY, Kim HJ, et al. Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole. Nanotechnology 2012; 23:085101; http://dx.doi.org/10.1088/0957-4484/23/8/085101; PMID: 22293239
  • Cheng K, Blumen SR, MacPherson MB, Steinbacher JL, Mossman BT, Landry CC. Enhanced uptake of porous silica microparticles by bifunctional surface modification with a targeting antibody and a biocompatible polymer. ACS Appl Mater Interfaces 2010; 2:2489 - 95; http://dx.doi.org/10.1021/am100530t; PMID: 20707315
  • Lei C, Liu P, Chen B, Mao Y, Engelmann H, Shin Y, et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 2010; 132:6906 - 7; http://dx.doi.org/10.1021/ja102414t; PMID: 20433206
  • Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 2011; 5:4131 - 44; http://dx.doi.org/10.1021/nn200809t; PMID: 21524062
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2:469 - 78; http://dx.doi.org/10.1038/nnano.2007.223; PMID: 18654343
  • Giri S, Trewyn BG, Lin VS. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine (Lond) 2007; 2:99 - 111; http://dx.doi.org/10.2217/17435889.2.1.99; PMID: 17716196
  • Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009; 5:2673 - 7; http://dx.doi.org/10.1002/smll.200900621; PMID: 19780069
  • Trewyn BG, Giri S, Slowing II, Lin VS. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun (Camb) 2007; 3236 - 45; http://dx.doi.org/10.1039/b701744h; PMID: 17668088
  • Mortera R, Fiorilli S, Garrone E, Vernão E, Onida B. Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: A quantitative model. Chem Eng J 2009; 156:184 - 92; http://dx.doi.org/10.1016/j.cej.2009.10.018
  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 2011; 5:1366 - 75; http://dx.doi.org/10.1021/nn103077k; PMID: 21294526
  • Huang X, Zhuang J, Teng X, Li L, Chen D, Yan X, et al. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials 2010; 31:6142 - 53; http://dx.doi.org/10.1016/j.biomaterials.2010.04.055; PMID: 20510446
  • Santos HA, Bimbo LM, Herranz B, Shahbazi MA, Hirvonen J, Salonen J. Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. J Mater Res 2012; In Press http://dx.doi.org/10.1557/jmr.2012.271
  • Santos HA, Hirvonen . Nanostructured porous silicon materials: Potential candidates for improving drug delivery. Nanomedicine 2012; 7:1281 - 84; http://dx.doi.org/10.2217/nnm.12.106; PMID: 22994953