979
Views
11
CrossRef citations to date
0
Altmetric
Report

Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system

, , , &
Pages 195-201 | Published online: 01 Oct 2012

References

  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28:5 - 24; http://dx.doi.org/10.1016/S0169-409X(97)00048-3; PMID: 10837562
  • Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 2007; 336:367 - 75; http://dx.doi.org/10.1016/j.ijpharm.2006.11.061; PMID: 17207944
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55:329 - 47; http://dx.doi.org/10.1016/S0169-409X(02)00228-4; PMID: 12628320
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6:319 - 27; http://dx.doi.org/10.1016/S1359-0286(02)00117-1
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008; 364:298 - 327; http://dx.doi.org/10.1016/j.ijpharm.2008.04.042; PMID: 18621492
  • Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011; 63:170 - 83; http://dx.doi.org/10.1016/j.addr.2010.10.008; PMID: 20965219
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65:271 - 84; http://dx.doi.org/10.1016/S0168-3659(99)00248-5; PMID: 10699287
  • Sandanaraj BS, Gremlich HU, Kneuer R, Dawson J, Wacha S. Fluorescent nanoprobes as a biomarker for increased vascular permeability: implications in diagnosis and treatment of cancer and inflammation. Bioconjug Chem 2010; 21:93 - 101; http://dx.doi.org/10.1021/bc900311h; PMID: 19958018
  • Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 2007; 120:18 - 26; http://dx.doi.org/10.1016/j.jconrel.2007.03.012; PMID: 17509712
  • Chacón M, Molpeceres J, Berges L, Guzmán M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur J Pharm Sci 1999; 8:99 - 107; http://dx.doi.org/10.1016/S0928-0987(98)00066-9; PMID: 10210732
  • Holzer M, Vogel V, Mäntele W, Schwartz D, Haase W, Langer K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur J Pharm Biopharm 2009; 72:428 - 37; http://dx.doi.org/10.1016/j.ejpb.2009.02.002; PMID: 19462479
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9:615 - 27; http://dx.doi.org/10.1038/nrd2591; PMID: 20616808
  • Pelton RH, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 1986; 20:247 - 56; http://dx.doi.org/10.1016/0166-6622(86)80274-8
  • Liu RX, Fraylich M, Saunders BR. Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 2009; 287:627 - 43; http://dx.doi.org/10.1007/s00396-009-2028-x
  • Das M, Mardyani S, Chan WCW, Kumacheva E. Biofunctionalized pH-responsive microgels for cancer cell targeting: Rational design. Adv Mater 2006; 18:80 - 3; http://dx.doi.org/10.1002/adma.200501043
  • Cheng CJ, Chu LY, Zhang J, Wang HD, Wei G. Effect of freeze-drying and rehydrating treatment on the thermo-responsive characteristics of poly(N-isopropylacrylamide) microspheres. Colloid Polym Sci 2008; 286:571 - 7; http://dx.doi.org/10.1007/s00396-007-1817-3
  • Heskins M, Guillet JE. Solution Properties of Poly(N-isopropylacrylamide). J Macromol Sci -Chem 1968; 2:1441 - 55; http://dx.doi.org/10.1080/10601326808051910
  • Afrassiabi A, Hoffman AS, Cadwell LA. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels. J Membr Sci 1987; 33:191 - 200; http://dx.doi.org/10.1016/S0376-7388(00)80377-4
  • Kratz K, Hellweg T, Eimer W.. Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. . Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000; 170:137 - 49; http://dx.doi.org/10.1016/S0927-7757(00)00490-8
  • Somasundaran P. Encyclopedia of Surface and Colloid Science, Volume 2. New York / London: Taylor & Francis, 2006.
  • Feil H, Bae YH, Feijen J, Kim SW. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 1993; 26:2496 - 500; http://dx.doi.org/10.1021/ma00062a016
  • Westacott CI, Sharif M. Cytokines in osteoarthritis: mediators or markers of joint destruction?. Semin Arthritis Rheum 1996; 25:254 - 72; http://dx.doi.org/10.1016/S0049-0172(96)80036-9; PMID: 8834014
  • Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344:907 - 16; http://dx.doi.org/10.1056/NEJM200103223441207; PMID: 11259725
  • Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater 2008; 7:248 - 54; http://dx.doi.org/10.1038/nmat2116; PMID: 18246072
  • Cremer MA, Rosloniec EF, Kang AH. The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med (Berl) 1998; 76:275 - 88; http://dx.doi.org/10.1007/s001090050217; PMID: 9535561
  • Xu PS, Gullotti E, Tong L, Highley CB, Errabelli DR, Hasan T, et al. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm 2009; 6:190 - 201; http://dx.doi.org/10.1021/mp800137z; PMID: 19035785
  • Jones CD, Lyon LA. Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 2000; 33:8301 - 6; http://dx.doi.org/10.1021/ma001398m
  • Jones CD, Lyon LA. Dependence of shell thickness on core compression in acrylic acid modified poly(N-isopropylacrylamide) core/shell microgels. Langmuir 2003; 19:4544 - 7; http://dx.doi.org/10.1021/la034392+
  • Berndt I, Richtering W. Doubly temperature sensitive core-shell microgels. Macromolecules 2003; 36:8780 - 5; http://dx.doi.org/10.1021/ma034771+