783
Views
8
CrossRef citations to date
0
Altmetric
Report

Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis

, , , , , , & show all
Pages 213-225 | Published online: 01 Oct 2012

References

  • Ahola N, Männistö N, Veiranto M, Karp M, Rich J, Efimov A, et al. An in vitro study of composites of poly(L-lactide-co-epsilon-caprolactone), β-tricalcium phosphate, and ciprofloxacin intended for local treatment of osteomyelitis. Biomatter 2012; In press
  • Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 2006; 113:102 - 10; http://dx.doi.org/10.1016/j.jconrel.2006.04.007; PMID: 16740332
  • Chihara S, Segreti J. Osteomyelitis. Dis Mon 2010; 56:6 - 31; http://dx.doi.org/10.1016/j.disamonth.2009.07.001
  • Parsons B, Strauss E. Surgical management of chronic osteomyelitis. Am J Surg 2004; 188:Suppl 57 - 66; http://dx.doi.org/10.1016/S0002-9610(03)00292-7; PMID: 15223504
  • Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release 2008; 130:202 - 15; http://dx.doi.org/10.1016/j.jconrel.2008.05.020; PMID: 18687500
  • Arruebo M, Vilaboa N, Santamaria J. Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery. Expert Opin Drug Deliv 2010; 7:589 - 603; http://dx.doi.org/10.1517/17425241003671544; PMID: 20230306
  • Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med 2008; 168:805 - 19; http://dx.doi.org/10.1001/archinte.168.8.805; PMID: 18443255
  • Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE, Foreign-Body Infection (FBI) Study Group. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA 1998; 279:1537 - 41; http://dx.doi.org/10.1001/jama.279.19.1537; PMID: 9605897
  • Khanlari B, Elzi L, Estermann L, Weisser M, Brett W, Grapow M, et al. A rifampicin-containing antibiotic treatment improves outcome of staphylococcal deep sternal wound infections. J Antimicrob Chemother 2010; 65:1799 - 806; http://dx.doi.org/10.1093/jac/dkq182; PMID: 20542908
  • Bliziotis IA, Ntziora F, Lawrence KR, Falagas ME. Rifampin as adjuvant treatment of Gram-positive bacterial infections: a systematic review of comparative clinical trials. Eur J Clin Microbiol Infect Dis 2007; 26:849 - 56; http://dx.doi.org/10.1007/s10096-007-0378-1; PMID: 17712583
  • Mäkinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Törmälä P, et al. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 2005; 56:1063 - 8; http://dx.doi.org/10.1093/jac/dki366; PMID: 16234335
  • Alvarez H, Castro C, Moujir L, Perera A, Delgado A, Soriano I, et al. Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. J Biomed Mater Res B Appl Biomater 2008; 85:93 - 104; http://dx.doi.org/10.1002/jbm.b.30921; PMID: 17696153
  • Mäkinen TJ, Veiranto M, Knuuti J, Jalava J, Törmälä P, Aro HT. Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylococcus aureus. Bone 2005; 36:292 - 9; http://dx.doi.org/10.1016/j.bone.2004.11.009; PMID: 15780955
  • Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials 2008; 29:350 - 8; http://dx.doi.org/10.1016/j.biomaterials.2007.09.040; PMID: 17977596
  • Tiainen J, Knuutila K, Veiranto M, Suokas E, Törmälä P, Kaarela O, et al. Pull-out strength of multifunctional bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 tacks: an experimental study allograft cranial bone. J Craniofac Surg 2009; 20:58 - 61; http://dx.doi.org/10.1097/SCS.0b013e318190df48; PMID: 19164990
  • Garvin KL, Miyano JA, Robinson D, Giger D, Novak J, Radio S. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg Am 1994; 76:1500 - 6; PMID: 7929497
  • Waknis V, Jonnalagadda S. Novel poly-DL-lactide-polycaprolactone copolymer based flexible drug delivery system for sustained release of ciprofloxacin. Drug Deliv 2011; 18:236 - 45; http://dx.doi.org/10.3109/10717544.2010.528070; PMID: 21189060
  • Castro C, Évora C, Baro M, Soriano I, Sánchez E. Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm 2005; 60:401 - 6; http://dx.doi.org/10.1016/j.ejpb.2005.02.005; PMID: 15996581
  • Castro C, Sánchez E, Delgado A, Soriano I, Núñez P, Baro M, et al. Ciprofloxacin implants for bone infection. In vitro-in vivo characterization. J Control Release 2003; 93:341 - 54; http://dx.doi.org/10.1016/j.jconrel.2003.09.004; PMID: 14644584
  • Koort JK, Mäkinen TJ, Suokas E, Veiranto M, Jalava J, Knuuti J, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:1502 - 8; http://dx.doi.org/10.1128/AAC.49.4.1502-1508.2005; PMID: 15793132
  • Koort JK, Suokas E, Veiranto M, Mäkinen TJ, Jalava J, Törmälä P, et al. In vitro and in vivo testing of bioabsorbable antibiotic containing bone filler for osteomyelitis treatment. J Biomed Mater Res A 2006; 78:532 - 40; http://dx.doi.org/10.1002/jbm.a.30766; PMID: 16736479
  • Koort JK, Makinen TJ, Suokas E, Veiranto M, Jalava J, Tormala P, et al. Sustained release of ciprofloxacin from an osteoconductive poly(DL)-lactide implant. Acta Orthop 2008; 79:295 - 301; http://dx.doi.org/10.1080/17453670710015111; PMID: 18484258
  • Daculsi G, Goyenvalle E, Cognet R, Aguado E, Suokas EO. Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials 2011; 32:3166 - 77; http://dx.doi.org/10.1016/j.biomaterials.2011.01.033; PMID: 21315446
  • Paakinaho K, Ellä V, Syrjälä S, Kellomäki M. Melt spinning of poly(l/d)lactide 96/4: Effects of molecular weight and melt processing on hydrolytic degradation. Polym Degrad Stabil 2009; 94:438 - 42; http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.010
  • Bain DF, Munday DL, Cox PJ. Evaluation of biodegradable rifampicin-bearing microsphere formulations using a stability-indicating high-performance liquid chromatographic assay. Eur J Pharm Sci 1998; 7:57 - 65; http://dx.doi.org/10.1016/S0928-0987(98)00005-0; PMID: 9845778
  • Jindal KC, Chaudhary RS, Singla AK, Gangwal SS, Khanna S. Effects of buffers and pH on rifampicin stability. Pharm Ind 1995; 57:420 - 2
  • Le Guellec C, Gaudet ML, Lamanetre S, Breteau M. Stability of rifampin in plasma: consequences for therapeutic monitoring and pharmacokinetic studies. Ther Drug Monit 1997; 19:669 - 74; http://dx.doi.org/10.1097/00007691-199712000-00011; PMID: 9421109
  • Baker R. Controlled Release of Biologically Active Agents. New York: John Wiley & Sons, 1987.
  • Ritger PL, Peppas NA. A simple equation for desciption of solute release I. fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 1987; 5:23 - 36; http://dx.doi.org/10.1016/0168-3659(87)90034-4
  • Jones DS, McCoy CP, Andrews GP. Physicochemical and drug diffusion analysis of rifampicin containing polyethylene glycol-poly(ε-caprolactone) networks designed for medical device applications. Chem Eng J 2011; 172:1088 - 95; http://dx.doi.org/10.1016/j.cej.2011.05.024
  • Jeong SI, Kim BS, Lee YM, Ihn KJ, Kim SH, Kim YH. Morphology of elastic poly(L-lactide-co-ε-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Biomacromolecules 2004; 5:1303 - 9; http://dx.doi.org/10.1021/bm049921i; PMID: 15244444
  • Herbert IR. Statistical analysis of copolymer sequence distribution. In: Ibbet RN, ed. NMR Spectroscopy of Polymers. London: Blackie Academic & Professional, 1993:50-79.
  • Ferńndez J, Etxeberria A, Sarasua JR. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. J Mech Behav Biomed Mater 2012; 9:100 - 12; http://dx.doi.org/10.1016/j.jmbbm.2012.01.003; PMID: 22498288
  • Cellai L, Cerrini S, Segre A, Brufani M, Fedeli W, Vaciago A. Comparative study of the conformations of rifamycins in solution and in the solid state by proton nuclear magnetic resonance and X-rays. J Org Chem 1982; 47:2652 - 61; http://dx.doi.org/10.1021/jo00134a028
  • Ragaert K, Dekeyser A, Cardon L, Degrieck J. Quantification of thermal material degradation during the processing of biomedical thermoplastics. J Appl Polym Sci 2011; 120:2872 - 80; http://dx.doi.org/10.1002/app.33323
  • Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media - part 3 influence of the morphology of poly(l-lactic acid). J Mater Sci Mater Med 1990; 1:198 - 206; http://dx.doi.org/10.1007/BF00701077
  • Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A. Aliphatic Polyesters - 1. the Degradation of Poly(epsilon-caprolactone) in vivo. J Appl Polym Sci 1981; 26:3779 - 87; http://dx.doi.org/10.1002/app.1981.070261124
  • ISO 15814. Implants for surgery – copolymers and blends based in polylactide – in vitro degradation testing.
  • Moir DT, Ming Di, Opperman T, Schweizer HP, Bowlin TL. A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. J Biomol Screen 2007; 12:855 - 64; http://dx.doi.org/10.1177/1087057107304729; PMID: 17644773