1,515
Views
35
CrossRef citations to date
0
Altmetric
Special Focus Review

Encapsulated stem cells for cancer therapy

Article: e24278 | Received 26 Feb 2013, Accepted 12 Mar 2013, Published online: 01 Jan 2013

References

  • Gage FH. Mammalian neural stem cells. Science 2000; 287:1433 - 8; http://dx.doi.org/10.1126/science.287.5457.1433; PMID: 10688783
  • Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000; 287:1442 - 6; http://dx.doi.org/10.1126/science.287.5457.1442; PMID: 10688785
  • Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int 2007; 7:9; http://dx.doi.org/10.1186/1475-2867-7-9; PMID: 17547749
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861 - 72; http://dx.doi.org/10.1016/j.cell.2007.11.019; PMID: 18035408
  • Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 2007; 110:3438 - 46; http://dx.doi.org/10.1182/blood-2006-11-055566; PMID: 17525288
  • Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005; 80:836 - 42; http://dx.doi.org/10.1097/01.tp.0000173794.72151.88; PMID: 16210973
  • Li Y, Li X, Zhao H, Feng R, Zhang X, Tai D, et al. Efficient induction of pluripotent stem cells from menstrual blood. Stem Cells Dev 2013; 22:1147 - 58; http://dx.doi.org/10.1089/scd.2012.0428; PMID: 23151296
  • Momin EN, Vela G, Zaidi HA, Quiñones‑Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. Curr Immunol Rev 2010; 6:137 - 48; http://dx.doi.org/10.2174/157339510791111718; PMID: 20490366
  • Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow‑derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65:3307 - 18; PMID: 15833864
  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell‑derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 2004; 101:18117 - 22; http://dx.doi.org/10.1073/pnas.0408258102; PMID: 15608062
  • Song C, Li G. CXCR4 and matrix metalloproteinase‑2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy 2011; 13:549 - 61; http://dx.doi.org/10.3109/14653249.2010.542457; PMID: 21171825
  • Barrilleaux BL, Fischer‑Valuck BW, Gilliam JK, Phinney DG, O’Connor KC. Activation of CD74 inhibits migration of human mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2010; 46:566 - 72; http://dx.doi.org/10.1007/s11626-010-9279-1; PMID: 20198449
  • Ratajczak MZ, Shin DM, Schneider G, Ratajczak J, Kucia M. Parental imprinting regulates insulin‑like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis. Leukemia 2012; http://dx.doi.org/10.1038/leu.2012.322; PMID: 23135355
  • Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A, et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 2004; 5:477 - 88; http://dx.doi.org/10.1016/S1535-6108(04)00116-3; PMID: 15144955
  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 2000; 97:12846 - 51; http://dx.doi.org/10.1073/pnas.97.23.12846; PMID: 11070094
  • Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55:663 - 7; http://dx.doi.org/10.1007/s000180050322; PMID: 10357234
  • Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11:1155 - 64; http://dx.doi.org/10.1038/sj.gt.3302276; PMID: 15141157
  • Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18:500 - 7; http://dx.doi.org/10.1038/cr.2008.40; PMID: 18364678
  • Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk‑1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269:67 - 77; http://dx.doi.org/10.1016/j.canlet.2008.04.032; PMID: 18571836
  • Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006; 203:1235 - 47; http://dx.doi.org/10.1084/jem.20051921; PMID: 16636132
  • Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration‑dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113:4197 - 205; http://dx.doi.org/10.1182/blood-2008-09-176198; PMID: 19036701
  • Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64:739 - 48; http://dx.doi.org/10.1016/j.addr.2011.06.010; PMID: 21740940
  • Xu X, Yang G, Zhang H, Prestwich GD. Evaluating dual activity LPA receptor pan‑antagonist/autotaxin inhibitors as anti‑cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 2009; 89:140 - 6; http://dx.doi.org/10.1016/j.prostaglandins.2009.07.006; PMID: 19682598
  • Ryu CH, Park SH, Park SA, Kim SM, Lim JY, Jeong CH, et al. Gene therapy of intracranial glioma using interleukin 12‑secreting human umbilical cord blood‑derived mesenchymal stem cells. Hum Gene Ther 2011; 22:733 - 43; http://dx.doi.org/10.1089/hum.2010.187; PMID: 21261460
  • Hu W, Wang J, Dou J, He X, Zhao F, Jiang C, et al. Augmenting therapy of ovarian cancer efficacy by secreting IL‑21 human umbilical cord blood stem cells in nude mice. Cell Transplant 2011; 20:669 - 80; http://dx.doi.org/10.3727/096368910X536509; PMID: 21054951
  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow‑derived mesenchymal stem cells as vehicles for interferon‑beta delivery into tumors. Cancer Res 2002; 62:3603 - 8; PMID: 12097260
  • Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira‑Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted‑delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96:1593 - 603; http://dx.doi.org/10.1093/jnci/djh299; PMID: 15523088
  • Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon‑alpha in a mouse melanoma lung metastasis model. Stem Cells 2008; 26:2332 - 8; http://dx.doi.org/10.1634/stemcells.2008-0084; PMID: 18617688
  • Bitsika V, Roubelakis MG, Zagoura D, Trohatou O, Makridakis M, Pappa KI, et al. Human amniotic fluid‑derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. Stem Cells Dev 2012; 21:1097 - 111; http://dx.doi.org/10.1089/scd.2011.0151; PMID: 21988169
  • Seo KW, Lee HW, Oh YI, Ahn JO, Koh YR, Oh SH, et al. Anti‑tumor effects of canine adipose tissue‑derived mesenchymal stromal cell‑based interferon‑β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy 2011; 13:944 - 55; http://dx.doi.org/10.3109/14653249.2011.584864; PMID: 21846298
  • Yi BR, O SN, Kang NH, Hwang KA, Kim SU, Jeung EB, et al. Genetically engineered stem cells expressing cytosine deaminase and interferon‑β migrate to human lung cancer cells and have potentially therapeutic anti‑tumor effects. Int J Oncol 2011; 39:833 - 9; PMID: 21769425
  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector‑producer cells for treatment of experimental brain tumors. Science 1992; 256:1550 - 2; http://dx.doi.org/10.1126/science.1317968; PMID: 1317968
  • Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82:297 - 300; http://dx.doi.org/10.1093/jnci/82.4.297; PMID: 2299679
  • Hamel W, Magnelli L, Chiarugi VP, Israel MA. Herpes simplex virus thymidine kinase/ganciclovir‑mediated apoptotic death of bystander cells. Cancer Res 1996; 56:2697 - 702; PMID: 8665496
  • Fillat C, Carrió M, Cascante A, Sangro B. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 2003; 3:13 - 26; http://dx.doi.org/10.2174/1566523033347426; PMID: 12553532
  • Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5‑fluorocytosine to 5‑fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A 1994; 91:8302 - 6; http://dx.doi.org/10.1073/pnas.91.17.8302; PMID: 8058798
  • Li Z, Shanmugam N, Katayose D, Huber B, Srivastava S, Cowan K, et al. Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing Escherichia coli cytosine deaminase. Cancer Gene Ther 1997; 4:113 - 7; PMID: 9080120
  • Wei MX, Tamiya T, Rhee RJ, Breakefield XO, Chiocca EA. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1995; 1:1171 - 7; PMID: 9815909
  • Marais R, Spooner RA, Light Y, Martin J, Springer CJ. Gene‑directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res 1996; 56:4735 - 42; PMID: 8840992
  • Danks MK, Morton CL, Pawlik CA, Potter PM. Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT‑11. Cancer Res 1998; 58:20 - 2; PMID: 9426050
  • Kim SU, Jeung EB, Kim YB, Cho MH, Choi KC. Potential tumor‑tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res 2011; 31:1249 - 58; PMID: 21508372
  • Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al‑Hashem R, et al. PEX‑producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 2005; 11:5965 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-05-0371; PMID: 16115940
  • Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, et al. Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 2011; 22:439 - 49; http://dx.doi.org/10.1089/hum.2010.116; PMID: 20925460
  • Walczak H, Bouchon A, Stahl H, Krammer PH. Tumor necrosis factor‑related apoptosis‑inducing ligand retains its apoptosis‑inducing capacity on Bcl‑2‑ or Bcl‑xL‑overexpressing chemotherapy‑resistant tumor cells. Cancer Res 2000; 60:3051 - 7; PMID: 10850456
  • Mueller LP, Luetzkendorf J, Widder M, Nerger K, Caysa H, Mueller T. TRAIL‑transduced multipotent mesenchymal stromal cells (TRAIL‑MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 2011; 18:229 - 39; http://dx.doi.org/10.1038/cgt.2010.68; PMID: 21037557
  • Kim KU, Seo SY, Heo KY, Yoo YH, Kim HJ, Lee HS, et al. Antitumor activity of TRAIL recombinant adenovirus in human malignant glioma cells. J Korean Med Sci 2005; 20:1046 - 52; http://dx.doi.org/10.3346/jkms.2005.20.6.1046; PMID: 16361820
  • Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12‑secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002; 62:5657 - 63; PMID: 12384520
  • Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, et al. Induction of glioblastoma apoptosis using neural stem cell‑mediated delivery of tumor necrosis factor‑related apoptosis‑inducing ligand. Cancer Res 2002; 62:7170 - 4; PMID: 12499252
  • Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69:4134 - 42; http://dx.doi.org/10.1158/0008-5472.CAN-08-4698; PMID: 19435900
  • Shah K, Tung CH, Yang K, Weissleder R, Breakefield XO. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 2004; 64:3236 - 42; http://dx.doi.org/10.1158/0008-5472.CAN-03-3516; PMID: 15126365
  • Shah K, Tung CH, Breakefield XO, Weissleder R. In vivo imaging of S‑TRAIL‑mediated tumor regression and apoptosis. Mol Ther 2005; 11:926 - 31; http://dx.doi.org/10.1016/j.ymthe.2005.01.017; PMID: 15922963
  • Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132:76 - 83; http://dx.doi.org/10.1016/j.jconrel.2008.08.010; PMID: 18789985
  • Ríhová B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev 2000; 42:65 - 80; http://dx.doi.org/10.1016/S0169-409X(00)00054-5; PMID: 10942815
  • Morris PJ. Immunoprotection of therapeutic cell transplants by encapsulation. Trends Biotechnol 1996; 14:163 - 7; http://dx.doi.org/10.1016/0167-7799(96)10020-2; PMID: 8645451
  • Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004; 4:528 - 39; http://dx.doi.org/10.1038/nrc1391; PMID: 15229478
  • Prestwich GD. Engineering a clinically‑useful matrix for cell therapy. Organogenesis 2008; 4:42 - 7; http://dx.doi.org/10.4161/org.6152; PMID: 19279714
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23:H41 - 56; http://dx.doi.org/10.1002/adma.201003963; PMID: 21394792
  • Allison DD, Grande‑Allen KJ. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng 2006; 12:2131 - 40; http://dx.doi.org/10.1089/ten.2006.12.2131; PMID: 16968154
  • Prestwich GD. Hyaluronic acid‑based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 2011; 155:193 - 9; http://dx.doi.org/10.1016/j.jconrel.2011.04.007; PMID: 21513749
  • Prestwich GD. Simplifying the extracellular matrix for 3‑D cell culture and tissue engineering: a pragmatic approach. J Cell Biochem 2007; 101:1370 - 83; http://dx.doi.org/10.1002/jcb.21386; PMID: 17492655
  • Prestwich GD. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc Chem Res 2008; 41:139 - 48; http://dx.doi.org/10.1021/ar7000827; PMID: 17655274
  • Shu XZ, Liu Y, Palumbo F, Prestwich GD. Disulfide‑crosslinked hyaluronan‑gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003; 24:3825 - 34; http://dx.doi.org/10.1016/S0142-9612(03)00267-9; PMID: 12818555
  • Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD. Disulfide cross‑linked hyaluronan hydrogels. Biomacromolecules 2002; 3:1304 - 11; http://dx.doi.org/10.1021/bm025603c; PMID: 12425669
  • Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol‑reactive poly(ethylene glycol) cross‑linkers for extracellular‑matrix‑mimetic biomaterials. Biomacromolecules 2007; 8:2883 - 9; http://dx.doi.org/10.1021/bm0703564; PMID: 17691843
  • Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD. Rheological properties of cross‑linked hyaluronan‑gelatin hydrogels for tissue engineering. Macromol Biosci 2009; 9:20 - 8; http://dx.doi.org/10.1002/mabi.200800141; PMID: 18839402
  • Pan L, Ren Y, Cui F, Xu Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 2009; 87:3207 - 20; http://dx.doi.org/10.1002/jnr.22142; PMID: 19530168
  • Sayyar B, Dodd M, Wen J, Ma S, Marquez‑Curtis L, Janowska‑Wieczorek A, et al. Encapsulation of factor IX‑engineered mesenchymal stem cells in fibrinogen‑alginate microcapsules enhances their viability and transgene secretion. J Tissue Eng 2012; 3:2041731412462018; http://dx.doi.org/10.1177/2041731412462018; PMID: 23316273
  • Park KI, Ourednik J, Ourednik V, Taylor RM, Aboody KS, Auguste KI, et al. Global gene and cell replacement strategies via stem cells. Gene Ther 2002; 9:613 - 24; http://dx.doi.org/10.1038/sj.gt.3301721; PMID: 12032707
  • Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002; 99:3024 - 9; http://dx.doi.org/10.1073/pnas.052678899; PMID: 11867737
  • Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell‑based therapy. Front Biosci 2008; 13:806 - 21; http://dx.doi.org/10.2741/2721; PMID: 17981590
  • Ganesh S, Iyer AK, Morrissey DV, Amiji MM. Hyaluronic acid based self‑assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013; 34:3489 - 502; http://dx.doi.org/10.1016/j.biomaterials.2013.01.077; PMID: 23410679
  • Tuin A, Zandstra J, Kluijtmans SG, Bouwstra JB, Harmsen MC, Van Luyn MJ. Hyaluronic acid‑recombinant gelatin gels as a scaffold for soft tissue regeneration. Eur Cell Mater 2012; 24:320 - 30; PMID: 23070944
  • Chang CY, Chan AT, Armstrong PA, Luo HC, Higuchi T, Strehin IA, et al. Hyaluronic acid‑human blood hydrogels for stem cell transplantation. Biomaterials 2012; 33:8026 - 33; http://dx.doi.org/10.1016/j.biomaterials.2012.07.058; PMID: 22898181
  • Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 2009; 10:682 - 92; http://dx.doi.org/10.1038/nrn2685; PMID: 19654582
  • Goren A, Dahan N, Goren E, Baruch L, Machluf M. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long‑term cellular therapy. FASEB J 2010; 24:22 - 31; http://dx.doi.org/10.1096/fj.09-131888; PMID: 19726759
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359:492 - 507; http://dx.doi.org/10.1056/NEJMra0708126; PMID: 18669428
  • Affronti ML, Heery CR, Herndon JE 2nd, Rich JN, Reardon DA, Desjardins A, et al. Overall survival of newly diagnosed glioblastoma patients receiving carmustine wafers followed by radiation and concurrent temozolomide plus rotational multiagent chemotherapy. Cancer 2009; 115:3501 - 11; http://dx.doi.org/10.1002/cncr.24398; PMID: 19514083
  • Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009; 18:1061 - 83; http://dx.doi.org/10.1517/13543780903052764; PMID: 19555299
  • Asthagiri AR, Pouratian N, Sherman J, Ahmed G, Shaffrey ME. Advances in brain tumor surgery. [viii‑ix.] Neurol Clin 2007; 25:975 - 1003, viii‑ix; http://dx.doi.org/10.1016/j.ncl.2007.07.006; PMID: 17964023
  • Minniti G, De Sanctis V, Muni R, Filippone F, Bozzao A, Valeriani M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 2008; 88:97 - 103; http://dx.doi.org/10.1007/s11060-008-9538-0; PMID: 18250965
  • Erpolat OP, Akmansu M, Goksel F, Bora H, Yaman E, Büyükberber S. Outcome of newly diagnosed glioblastoma patients treated by radiotherapy plus concomitant and adjuvant temozolomide: a long‑term analysis. Tumori 2009; 95:191 - 7; PMID: 19579865
  • Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 2012; 15:197 - 204; http://dx.doi.org/10.1038/nn.3019; PMID: 22197831
  • Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25:2295 - 305; http://dx.doi.org/10.1200/JCO.2006.09.9861; PMID: 17538176
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8:610 - 22; http://dx.doi.org/10.1038/nrn2175; PMID: 17643088
  • Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M. APO2 ligand: a novel lethal weapon against malignant glioma?. FEBS Lett 1998; 427:124 - 8; http://dx.doi.org/10.1016/S0014-5793(98)00409-8; PMID: 9613612
  • Panner A, James CD, Berger MS, Pieper RO. mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 2005; 25:8809 - 23; http://dx.doi.org/10.1128/MCB.25.20.8809-8823.2005; PMID: 16199861
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663 - 76; http://dx.doi.org/10.1016/j.cell.2006.07.024; PMID: 16904174
  • Son BR, Marquez‑Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal‑derived factor‑1‑CXCR4 and hepatocyte growth factor‑c‑met axes and involves matrix metalloproteinases. Stem Cells 2006; 24:1254 - 64; http://dx.doi.org/10.1634/stemcells.2005-0271; PMID: 16410389
  • Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 2009; 106:4822 - 7; http://dx.doi.org/10.1073/pnas.0806647106; PMID: 19264968
  • Ma W, Fitzgerald W, Liu QY, O’Shaughnessy TJ, Maric D, Lin HJ, et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three‑dimensional collagen gels. Exp Neurol 2004; 190:276 - 88; http://dx.doi.org/10.1016/j.expneurol.2003.10.016; PMID: 15530869