6,255
Views
114
CrossRef citations to date
0
Altmetric
Special Focus Review

Biomaterials and bioengineering tomorrow’s healthcare

&
Article: e24717 | Received 22 Mar 2013, Accepted 16 Apr 2013, Published online: 01 Apr 2013

References

  • Paul C, Robert MN. Bioengineering: 25 years of progress—but still only a beginning. Technol Soc 2004; 26:415 - 31; http://dx.doi.org/10.1016/j.techsoc.2004.01.008
  • Chatterjee S, Gardner TJ. Factors determining selection of valve prosthesis--tissue or mechanical: current status. Adv Cardiol 2002; 39:189 - 94; http://dx.doi.org/10.1159/000058927; PMID: 12060918
  • Rahimtoola SH. Choice of prosthetic heart valve for adult patients. J Am Coll Cardiol 2003; 41:893 - 904; http://dx.doi.org/10.1016/S0735-1097(02)02965-0; PMID: 12651032
  • Citron P, Smyth NP, Kleinert M, Kahn AR. Clinical experience with a new transvenous atrial lead. Chest 1978; 73:193 - 7; http://dx.doi.org/10.1378/chest.73.2.193; PMID: 620581
  • Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, et al, Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE ICD) Trial Investigators. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 2003; 289:2685 - 94; http://dx.doi.org/10.1001/jama.289.20.2685; PMID: 12771115
  • Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al, MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002; 346:1845 - 53; http://dx.doi.org/10.1056/NEJMoa013168; PMID: 12063368
  • Rawicki B. Treatment of cerebral origin spasticity with continuous intrathecal baclofen delivered via an implantable pump: long-term follow-up review of 18 patients. J Neurosurg 1999; 91:733 - 6; http://dx.doi.org/10.3171/jns.1999.91.5.0733; PMID: 10541228
  • Benabid AL, Koudsie A, Benazzouz A, Piallat B, Krack P, Limousin-Dowsey P, et al. Deep brain stimulation for Parkinson’s disease. Adv Neurol 2001; 86:405 - 12; PMID: 11554003
  • Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976) 2002; 27:2662 - 73; http://dx.doi.org/10.1097/00007632-200212010-00005; PMID: 12461392
  • Ouellette J. Biomaterials facilitate medical breakthroughs. Ind Physicist 2001; 18–21.
  • Davis JR. Overview of biomaterials and their use in medical devices. In: Davis JR, ed. Handbook of materials for medical devices. Illustrated edition, Ohio: ASM International, 2003: 1-11.
  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 2001; 61:1189 - 224; http://dx.doi.org/10.1016/S0266-3538(00)00241-4
  • Williams D. An Introduction to Medical and Dental Materials, Concise Encyclopedia of Medical & Dental Materials, D. Williams, Ed., Pergamon Press and The MIT Press, 1990, xvii–xx.
  • Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2013; 2:57 - 71; http://dx.doi.org/10.1002/adhm.201200197; PMID: 23184739
  • Sosnik A, Sefton MV. Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials 2005; 26:7425 - 35; http://dx.doi.org/10.1016/j.biomaterials.2005.05.086; PMID: 16023714
  • Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, et al. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials 2013; 34:2902 - 10; http://dx.doi.org/10.1016/j.biomaterials.2013.01.035; PMID: 23375953
  • Hench LL. Biomaterials. Science 1980; 208:826 - 31; http://dx.doi.org/10.1126/science.6246576; PMID: 6246576
  • Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface 2010; 7:Suppl 4 S379 - 91; http://dx.doi.org/10.1098/rsif.2010.0151.focus; PMID: 20484227
  • Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295:1014 - 7; http://dx.doi.org/10.1126/science.1067404; PMID: 11834817
  • Chen CH, Wei HJ, Lin WW, Chiu I, Hwang SM, Wang CC, et al. Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc Res 2008; 80:88 - 95; http://dx.doi.org/10.1093/cvr/cvn149; PMID: 18539631
  • Martinez EC, Kofidis T. Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol 2011; 50:312 - 9; http://dx.doi.org/10.1016/j.yjmcc.2010.08.009; PMID: 20709074
  • Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 2005; 105:151 - 63; http://dx.doi.org/10.1016/j.pharmthera.2004.10.003; PMID: 15670624
  • Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 2004; 94:223 - 9; http://dx.doi.org/10.1161/01.RES.0000109792.43271.47; PMID: 14656930
  • Missing Reference
  • Bartosh TJ, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 2008; 105:612 - 23; http://dx.doi.org/10.1002/jcb.21862; PMID: 18661483
  • Barrère F, Mahmood TA. Groot de K and Blitterswijk van CA. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater Sci Eng Rep 2008; 59:38 - 71; http://dx.doi.org/10.1016/j.mser.2007.12.001
  • Kempen DH, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 2009; 30:2816 - 25; http://dx.doi.org/10.1016/j.biomaterials.2009.01.031; PMID: 19232714
  • Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2011; 19:53 - 9; http://dx.doi.org/10.1038/mt.2010.190; PMID: 20859259
  • Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012; 30:546 - 54; http://dx.doi.org/10.1016/j.tibtech.2012.07.005; PMID: 22939815
  • Webster TJ. Nanostructured materials. In: Ying Jackie Y, editor. California, USA: Academic Press; 2001, 125–67.
  • Roberts SJ, Howard D, Buttery LD, Shakesheff KM. Clinical applications of musculoskeletal tissue engineering. Br Med Bull 2008; 86:7 - 22; http://dx.doi.org/10.1093/bmb/ldn016; PMID: 18424445
  • Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, et al. Nanobiomaterial applications in orthopedics. J Orthop Res 2007; 25:11 - 22; http://dx.doi.org/10.1002/jor.20305; PMID: 17048259
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677 - 89; http://dx.doi.org/10.1016/j.cell.2006.06.044; PMID: 16923388
  • Egli RJ, Luginbuehl R. Tissue engineering - nanomaterials in the musculoskeletal system. Swiss Med Wkly 2012; 142:w13647; PMID: 22850986
  • Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices 2004; 1:21 - 31; http://dx.doi.org/10.1586/17434440.1.1.21; PMID: 16293007
  • Jayarama Reddy V, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, et al. Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 2013; 21:1 - 16; http://dx.doi.org/10.1111/j.1524-475X.2012.00861.x; PMID: 23126632
  • Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 2007; 48:15 - 24; http://dx.doi.org/10.1016/j.jdermsci.2007.05.018; PMID: 17643966
  • Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 2012; 37:237 - 80; http://dx.doi.org/10.1016/j.progpolymsci.2011.06.004
  • Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM. Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv 2012; 30:321 - 8; http://dx.doi.org/10.1016/j.biotechadv.2011.06.019; PMID: 21756992
  • Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet 2003; 361:247 - 9; http://dx.doi.org/10.1016/S0140-6736(03)12275-1; PMID: 12547552
  • Garg S, Duckers HJ, Serruys PW. Endothelial progenitor cell capture stents: will this technology find its niche in contemporary practice?. Eur Heart J 2010; 31:1032 - 5; http://dx.doi.org/10.1093/eurheartj/ehp591; PMID: 20064819
  • Luo C, Zheng Y, Diao Z, Qiu J, Wang G. Review: research progress and future prospects for promoting endothelialization on endovascular stents and preventing restenosis. J Med Biol Eng 2011; 31:307 - 16; http://dx.doi.org/10.5405/jmbe.958
  • Puranik AS, Dawson ER, Peppas NA. Recent advances in drug eluting stents. Int J Pharm 2013; 441:665 - 79; http://dx.doi.org/10.1016/j.ijpharm.2012.10.029; PMID: 23117022
  • Santiago FS, Khachigian LM. Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis. J Mol Med (Berl) 2001; 79:695 - 706; http://dx.doi.org/10.1007/s001090100272; PMID: 11862313
  • Burt HM, Hunter WL. Drug-eluting stents: a multidisciplinary success story. Adv Drug Deliv Rev 2006; 58:350 - 7; http://dx.doi.org/10.1016/j.addr.2006.01.014; PMID: 16546288
  • Gouvea C. Biosensors for health applications. In: Serra PA, ed. Biosensors for health, environment and biosecurity. ISBN:978-953-307-443-6, InTech, (DOI: http://dx.doi.org/10.5772/17103) 2011: 71-86.
  • Ballerstadt R, Evans C, Gowda A, McNichols R. Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing. J Diabetes Sci Technol 2007; 1:384 - 93; PMID: 19885094
  • Arya SK, Datta M, Malhotra BD. Recent advances in cholesterol biosensor. Biosens Bioelectron 2008; 23:1083 - 100; http://dx.doi.org/10.1016/j.bios.2007.10.018; PMID: 18063356
  • Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 2008; 8:1180 - 6; http://dx.doi.org/10.2174/156802608785849021; PMID: 18855704
  • Herth MM, Barz M, Moderegger D, Allmeroth M, Jahn M, Thews O, et al. Radioactive labeling of defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10:1697 - 703; http://dx.doi.org/10.1021/bm8014736; PMID: 19425549
  • Duncan R. Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 2011; 22:492 - 501; http://dx.doi.org/10.1016/j.copbio.2011.05.507; PMID: 21676609
  • Menegatti E, Berardi D, Messina M, Ferrante I, Giachino O, Spagnolo B, et al. Lab-on-a-chip: Emerging analytical platforms for immune-mediated diseases. Autoimmun Rev 2012; http://dx.doi.org/10.1016/j.autrev.2012.11.005; PMID: 23219952
  • Becker H, Carstens C, Gärtner C. Erythrocyte sedimentation and agglutination assays in a multi-bifurcating microfluidic cartridge. Proc. MicroTAS 2009, Jeju, Korea, 430-2.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547 - 68; http://dx.doi.org/10.1016/j.addr.2012.04.005; PMID: 22575858
  • Palakurthi NK, Correa ZM, Augsburger JJ, Banerjee RK. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J Ocul Pharmacol Ther 2011; 27:151 - 6; http://dx.doi.org/10.1089/jop.2010.0037; PMID: 21323470
  • Reed ML, Wu C, Kneller J, Watkins S, Vorp DA, Nadeem A, et al. Micromechanical devices for intravascular drug delivery. J Pharm Sci 1998; 87:1387 - 94; http://dx.doi.org/10.1021/js980085q; PMID: 9811495
  • Leroux-Roels I, Vets E, Freese R, Seiberling M, Weber F, Salamand C, et al. Seasonal influenza vaccine delivered by intradermal microinjection: A randomised controlled safety and immunogenicity trial in adults. Vaccine 2008; 26:6614 - 9; http://dx.doi.org/10.1016/j.vaccine.2008.09.078; PMID: 18930093
  • Rauhi AM. Biomaterials body shop: diverse approaches to diverse human needs. Chem Eng News 2000; 78:33 - 41; http://dx.doi.org/10.1021/cen-v078n026.p033
  • Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999; 286:2244 - 5; http://dx.doi.org/10.1126/science.286.5448.2244; PMID: 10636774
  • Park S, Healy KE. Nanoparticulate DNA packaging using terpolymers of poly(lysine-g-(lactide-b-ethylene glycol)). Bioconjug Chem 2003; 14:311 - 9; http://dx.doi.org/10.1021/bc025623b; PMID: 12643741
  • Kirschnera CM, Ansetha KS. Hydrogels in healthcare: From static to dynamic material microenvironments. Acta Mater 2013; 61:931 - 44; http://dx.doi.org/10.1016/j.actamat.2012.10.037
  • Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol 2009; 87:433 - 7; http://dx.doi.org/10.1111/j.1755-3768.2008.01404.x; PMID: 19016660
  • Badugu R, Lakowicz JR, Geddes CD. A glucose-sensing contact lens: from bench top to patient. Curr Opin Biotechnol 2005; 16:100 - 7; http://dx.doi.org/10.1016/j.copbio.2004.12.007; PMID: 15722022
  • Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today 2010; 13:14 - 22; http://dx.doi.org/10.1016/S1369-7021(10)70013-4
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 2002; 54:37 - 51; http://dx.doi.org/10.1016/S0169-409X(01)00242-3; PMID: 11755705
  • Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, et al. Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 2012; 30:1196 - 205; http://dx.doi.org/10.1002/stem.1089; PMID: 22438013
  • Meenach SA, Anderson KW, Hilt JZ. Synthesis and characterization of thermoresponsive poly(ethylene glycol)-based hydrogels and their magnetic nanocomposites. J Polym Sci Pol Chem. 2010; 48:3229 - 35; http://dx.doi.org/10.1002/pola.24087
  • Betancourt T, Pardo J, Soo K, Peppas NA. Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 2010; 93:175 - 88; PMID: 19536838
  • Kloxin AM, Benton JA, Anseth KS. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 2010; 31:1 - 8; http://dx.doi.org/10.1016/j.biomaterials.2009.09.025; PMID: 19788947
  • Benton JA, Kern HB, Anseth KS. Substrate properties influence calcification in valvular interstitial cell culture. J Heart Valve Dis 2008; 17:689 - 99; PMID: 19137803
  • Tripathi A, Kumar A. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 2011; 11:22 - 35; http://dx.doi.org/10.1002/mabi.201000286; PMID: 21077225
  • Jain E, Srivastava A, Kumar A. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. J Mater Sci Mater Med 2009; 20:Suppl 1 S173 - 9; http://dx.doi.org/10.1007/s10856-008-3504-4; PMID: 18597161
  • Kumar A, Srivastava A. Cell separation using cryogel-based affinity chromatography. Nat Protoc 2010; 5:1737 - 47; http://dx.doi.org/10.1038/nprot.2010.135; PMID: 21030950
  • Bhat S, Tripathi A, Kumar A. Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface 2011; 8:540 - 54; http://dx.doi.org/10.1098/rsif.2010.0455; PMID: 20943683
  • Bhat S, Lindgren L, Kumar A.. In vitro neo-cartilage formation on three-dimensional composite polymeric cryogel matrix. Macromol Biosci
  • Mishra R, Kumar A. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. J Biomater Sci Polym Ed 2011; 22:2107 - 26; http://dx.doi.org/10.1163/092050610X534230; PMID: 21067655
  • Vishnoi T, Kumar A. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation. J Mater Sci Mater Med 2013; 24:447 - 59; http://dx.doi.org/10.1007/s10856-012-4795-z; PMID: 23124526
  • Bhat S, Kumar A. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng 2012; 114:663 - 70; http://dx.doi.org/10.1016/j.jbiosc.2012.07.005; PMID: 22884715
  • Jain E, Karande AA, Kumar A. Supermacroporous polymer-based cryogel bioreactor for monoclonal antibody production in continuous culture using hybridoma cells. Biotechnol Prog 2011; 27:170 - 80; http://dx.doi.org/10.1002/btpr.497; PMID: 20865749
  • Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A 2012; 109:19590 - 5; http://dx.doi.org/10.1073/pnas.1211516109; PMID: 23150549