4,184
Views
53
CrossRef citations to date
0
Altmetric
Report

Comprehensive histological evaluation of bone implants

, , , &
Article: e27993 | Received 14 Oct 2013, Accepted 24 Jan 2014, Published online: 06 Feb 2014

References

  • MarsellR, EinhornTA. The biology of fracture healing. Injury2011; 42:551 - 5; http://dx.doi.org/10.1016/j.injury.2011.03.031; PMID: 21489527
  • SchindelerA, McDonaldMM, BokkoP, LittleDG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol2008; 19:459 - 66; http://dx.doi.org/10.1016/j.semcdb.2008.07.004; PMID: 18692584
  • Ai-AqlZS, AlaglAS, GravesDT, GerstenfeldLC, EinhornTA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res2008; 87:107 - 18; http://dx.doi.org/10.1177/154405910808700215; PMID: 18218835
  • JensenT, JakobsenT, BaasJ, NygaardJV, Dolatshahi-PirouzA, HovgaardMB, FossM, BüngerC, BesenbacherF, SøballeK. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation. J Biomed Mater Res A2010; 95:665 - 72; http://dx.doi.org/10.1002/jbm.a.32863; PMID: 20725972
  • MihalkoWM, HowardC, DimaanoF, DimaanoN, HawkinsM. Effects of hydroxyapatite on titanium foam as a bone ingrowth surface in acetabular shells: a canine study. J Long Term Eff Med Implants2010; 20:35 - 42; http://dx.doi.org/10.1615/JLongTermEffMedImplants.v20.i1.50; PMID: 21284586
  • RammeltS, HeckC, BernhardtR, BierbaumS, ScharnweberD, GoebbelsJ, ZieglerJ, BiewenerA, ZwippH. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. J Orthop Res2007; 25:1052 - 61; http://dx.doi.org/10.1002/jor.20403; PMID: 17457829
  • BlokhuisTJ, WippermannBW, den BoerFC, van LingenA, PatkaP, BakkerFC, HaarmanHJ. Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. J Biomed Mater Res2000; 51:369 - 75; http://dx.doi.org/10.1002/1097-4636(20000905)51:3<369::AID-JBM10>3.0.CO;2-J; PMID: 10880078
  • SchiekerM, MutschlerW. [Bridging posttraumatic bony defects. Established and new methods]. Unfallchirurg2006; 109:715 - 32; http://dx.doi.org/10.1007/s00113-006-1152-z; PMID: 16941096
  • Schmidt-RohlfingB, TzioupisC, MenzelCL, PapeHC. [Tissue engineering of bone tissue. Principles and clinical applications]. Unfallchirurg2009; 112:785 - 95; http://dx.doi.org/10.1007/s00113-009-1695-x; PMID: 19756458
  • PearceAI, RichardsRG, MilzS, SchneiderE, PearceSG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater2007; 13:1 - 10; PMID: 17334975
  • BensaïdW, OudinaK, ViateauV, PotierE, BoussonV, BlanchatC, SedelL, GuilleminG, PetiteH. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng2005; 11:814 - 24; http://dx.doi.org/10.1089/ten.2005.11.814; PMID: 15998221
  • PetiteH, ViateauV, BensaïdW, MeunierA, de PollakC, BourguignonM, OudinaK, SedelL, GuilleminG. Tissue-engineered bone regeneration. Nat Biotechnol2000; 18:959 - 63; http://dx.doi.org/10.1038/79449; PMID: 10973216
  • BloemersFW, BlokhuisTJ, PatkaP, BakkerFC, WippermannBW, HaarmanHJ. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater2003; 66:526 - 31; http://dx.doi.org/10.1002/jbm.b.10045; PMID: 12861603
  • GugalaZ, GogolewskiS. Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury2002; 33:Suppl 2B71 - 6; http://dx.doi.org/10.1016/S0020-1383(02)00135-3; PMID: 12161322
  • ViateauV, GuilleminG, BoussonV, OudinaK, HannoucheD, SedelL, Logeart-AvramoglouD, PetiteH. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res2007; 25:741 - 9; http://dx.doi.org/10.1002/jor.20352; PMID: 17318898
  • ReichertJC, WullschlegerME, CipitriaA, LienauJ, ChengTK, SchützMA, DudaGN, NöthU, EulertJ, HutmacherDW. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop2011; 35:1229 - 36; http://dx.doi.org/10.1007/s00264-010-1146-x; PMID: 21136053
  • BlokhuisTJ, WippermannBW, den BoerFC, van LingenA, PatkaP, BakkerFC, HaarmanHJ. Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. J Biomed Mater Res2000; 51:369 - 75; http://dx.doi.org/10.1002/1097-4636(20000905)51:3<369::AID-JBM10>3.0.CO;2-J; PMID: 10880078
  • KonE, MuragliaA, CorsiA, BiancoP, MarcacciM, MartinI, BoydeA, RuspantiniI, ChistoliniP, RoccaM, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res2000; 49:328 - 37; http://dx.doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q; PMID: 10602065
  • NussKM, AuerJA, BoosA, von RechenbergB. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones. BMC Musculoskelet Disord2006; 7:67; http://dx.doi.org/10.1186/1471-2474-7-67; PMID: 16911787
  • GiannoniP, MastrogiacomoM, AliniM, PearceSG, CorsiA, SantoliniF, MuragliaA, BiancoP, CanceddaR. Regeneration of large bone defects in sheep using bone marrow stromal cells. J Tissue Eng Regen Med2008; 2:253 - 62; http://dx.doi.org/10.1002/term.90; PMID: 18537203
  • SarkarMR, AugatP, ShefelbineSJ, SchorlemmerS, Huber-LangM, ClaesL, KinzlL, IgnatiusA. Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials2006; 27:1817 - 23; http://dx.doi.org/10.1016/j.biomaterials.2005.10.039; PMID: 16307796
  • ClaesL, Eckert-HübnerK, AugatP. The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg2003; 388:316 - 22; http://dx.doi.org/10.1007/s00423-003-0396-0; PMID: 13680236
  • MastrogiacomoM, CorsiA, FranciosoE, Di ComiteM, MonettiF, ScaglioneS, FaviaA, CrovaceA, BiancoP, CanceddaR. Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng2006; 12:1261 - 73; http://dx.doi.org/10.1089/ten.2006.12.1261; PMID: 16771639
  • NiemeyerP, FechnerK, MilzS, RichterW, SuedkampNP, MehlhornAT, PearceS, KastenP. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials2010; 31:3572 - 9; http://dx.doi.org/10.1016/j.biomaterials.2010.01.085; PMID: 20153047
  • GaoTJ, LindholmTS, KommonenB, RagniP, ParonziniA, LindholmTC, JalovaaraP, UristMR. The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop1997; 21:194 - 200; http://dx.doi.org/10.1007/s002640050149; PMID: 9266302
  • MarcacciM, KonE, ZaffagniniS, GiardinoR, RoccaM, CorsiA, BenvenutiA, BiancoP, QuartoR, MartinI, et al. Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int1999; 64:83 - 90; http://dx.doi.org/10.1007/s002239900583; PMID: 9868289
  • ReichertJC, CipitriaA, EpariDR, SaifzadehS, KrishnakanthP, BernerA, WoodruffMA, SchellH, MehtaM, SchuetzMA, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med2012; 4:141ra93; http://dx.doi.org/10.1126/scitranslmed.3003720; PMID: 22764209
  • HarmsC, HelmsK, TaschnerT, StratosI, IgnatiusA, GerberT, LenzS, RammeltS, VollmarB, MittlmeierT. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis. Int J Nanomedicine2012; 7:2883 - 9; http://dx.doi.org/10.2147/IJN.S29314; PMID: 22745551
  • LohfeldS, CahillS, BarronV, McHughP, DürselenL, KrejaL, BauseweinC, IgnatiusA. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater2012; 8:3446 - 56; http://dx.doi.org/10.1016/j.actbio.2012.05.018; PMID: 22652444
  • LiuT, WuG, WismeijerD, GuZ, LiuY. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone2013; 56:110 - 8; http://dx.doi.org/10.1016/j.bone.2013.05.017; PMID: 23732874
  • RammeltS, CorbeilD, MantheyS, ZwippH, HanischU. Immunohistochemical in situ characterization of orthopedic implants on polymethyl metacrylate embedded cutting and grinding sections. J Biomed Mater Res A2007; 83:313 - 22; http://dx.doi.org/10.1002/jbm.a.31243; PMID: 17437302
  • RentschB, HofmannA, BreierA, RentschC, ScharnweberD. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization. Ann Biomed Eng2009; 37:2118 - 28; http://dx.doi.org/10.1007/s10439-009-9731-0; PMID: 19626441
  • RentschC, SchneidersW, HessR, RentschB, BernhardtR, SpeklK, SchneiderK, ScharnweberD, BiewenerA, RammeltS. Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: A pilot study in sheep. J Biomater Appl2014; 28:654 - 66; http://dx.doi.org/10.1177/0885328212471409; PMID: 23413230