807
Views
9
CrossRef citations to date
0
Altmetric
Report

Design of 2D chitosan scaffolds via electrochemical structuring

, , , , , & show all
Article: e29506 | Received 05 Feb 2014, Accepted 05 Jun 2014, Published online: 18 Jun 2014

References

  • BoutenCV, DankersPY, Driessen-MolA, PedronS, BrizardAM, BaaijensFP. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev2011; 63:221 - 41; http://dx.doi.org/10.1016/j.addr.2011.01.007; PMID: 21277921
  • YiBA, WernetO, ChienKR. Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J Clin Invest2010; 120:20 - 8; http://dx.doi.org/10.1172/JCI40820; PMID: 20051633
  • ZimmermannWH, MelnychenkoI, WasmeierG, DidiéM, NaitoH, NixdorffU, HessA, BudinskyL, BruneK, MichaelisB, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med2006; 12:452 - 8; http://dx.doi.org/10.1038/nm1394; PMID: 16582915
  • AlconA, Cagavi BozkulakE, QyangY. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci2012; 69:2635 - 56; http://dx.doi.org/10.1007/s00018-012-0942-4; PMID: 22388688
  • SlaughterBV, KhurshidSS, FisherOZ, KhademhosseiniA, PeppasNA. Hydrogels in regenerative medicine. Adv Mater2009; 21:3307 - 29; http://dx.doi.org/10.1002/adma.200802106; PMID: 20882499
  • ManoJF, SilvaGA, AzevedoHS, MalafayaPB, SousaRA, SilvaSS, BoeselLF, OliveiraJM, SantosTC, MarquesAP, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface2007; 4:999 - 1030; http://dx.doi.org/10.1098/rsif.2007.0220; PMID: 17412675
  • KimIY, SeoSJ, MoonHS, YooMK, ParkIY, KimBC, ChoCS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv2008; 26:1 - 21; http://dx.doi.org/10.1016/j.biotechadv.2007.07.009; PMID: 17884325
  • LüS, WangH, LuW, LiuS, LinQ, LiD, DuanC, HaoT, ZhouJ, WangY, et al. Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng Part A2010; 16:1303 - 15; http://dx.doi.org/10.1089/ten.tea.2009.0434; PMID: 19905874
  • LuWN, LüSH, WangHB, LiDX, DuanCM, LiuZQ, HaoT, HeWJ, XuB, FuQ, et al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A2009; 15:1437 - 47; http://dx.doi.org/10.1089/ten.tea.2008.0143; PMID: 19061432
  • MotlaghD, SenyoSE, DesaiTA, RussellB. Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials2003; 24:2463 - 76; http://dx.doi.org/10.1016/S0142-9612(02)00644-0; PMID: 12695073
  • DeutschJ, MotlaghD, RussellB, DesaiTA. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J Biomed Mater Res2000; 53:267 - 75; http://dx.doi.org/10.1002/(SICI)1097-4636(2000)53:3<267::AID-JBM12>3.0.CO;2-J; PMID: 10813767
  • CurtisA, WilkinsonC. Topographical control of cells. Biomaterials1997; 18:1573 - 83; http://dx.doi.org/10.1016/S0142-9612(97)00144-0; PMID: 9613804
  • EnglerAJ, GriffinMA, SenS, BönnemannCG, SweeneyHL, DischerDE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol2004; 166:877 - 87; http://dx.doi.org/10.1083/jcb.200405004; PMID: 15364962
  • IngberDE. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A2005; 102:11571 - 2; http://dx.doi.org/10.1073/pnas.0505939102; PMID: 16091458
  • ChoiYS, VincentLG, LeeAR, KretchmerKC, ChirasatitsinS, DobkeMK, EnglerAJ. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials2012; 33:6943 - 51; http://dx.doi.org/10.1016/j.biomaterials.2012.06.057; PMID: 22800539
  • BayatiV, AltomareL, TanziMC, FarèS. Adipose-derived stem cells could sense the nano-scale cues as myogenic-differentiating factors. J Mater Sci Mater Med2013; 24:2439 - 47; http://dx.doi.org/10.1007/s10856-013-4983-5; PMID: 23793565
  • AltomareL, GadegaardN, VisaiL, TanziMC, FarèS. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomater2010; 6:1948 - 57; http://dx.doi.org/10.1016/j.actbio.2009.12.040; PMID: 20040385
  • AltomareL, RiehleM, GadegaardN, TanziMC, FarèS. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs2010; 33:535 - 43; PMID: 20872348
  • BeierJP, KlumppD, RudisileM, DerschR, WendorffJH, BleizifferO, ArkudasA, PolykandriotisE, HorchRE, KneserU. Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol2009; 9:34; http://dx.doi.org/10.1186/1472-6750-9-34; PMID: 19368709
  • HuangNF, PatelS, ThakarRG, WuJ, HsiaoBS, ChuB, LeeRJ, LiS. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett2006; 6:537 - 42; http://dx.doi.org/10.1021/nl060060o; PMID: 16522058
  • WidmerMS, GuptaPK, LuL, MeszlenyiRK, EvansGRD, BrandtK, SavelT, GurlekA, PatrickCWJr., MikosAG. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials1998; 19:1945 - 55; http://dx.doi.org/10.1016/S0142-9612(98)00099-4; PMID: 9863528
  • MikosAG, BaoY, CimaLG, IngberDE, VacantiJP, LangerR. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res1993; 27:183 - 9; http://dx.doi.org/10.1002/jbm.820270207; PMID: 8382203
  • MadihallySV, MatthewHWT. Porous chitosan scaffolds for tissue engineering. Biomaterials1999; 20:1133 - 42; http://dx.doi.org/10.1016/S0142-9612(99)00011-3; PMID: 10382829
  • BiL, CaoZ, HuY, SongY, YuL, YangB, MuJ, HuangZ, HanY. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J Mater Sci Mater Med2011; 22:51 - 62; http://dx.doi.org/10.1007/s10856-010-4177-3; PMID: 21052794
  • MikosAG, SarakinosG, LeiteSM, VacantiJP, LangerR. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials1993; 14:323 - 30; http://dx.doi.org/10.1016/0142-9612(93)90049-8; PMID: 8507774
  • LuY, ChenSC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev2004; 56:1621 - 33; http://dx.doi.org/10.1016/j.addr.2004.05.002; PMID: 15350292
  • AltomareL, DraghiL, ChiesaR, De NardoL. Morphology tuning of chitosan films via electrochemical deposition. Mater Lett2012; 78:18 - 21; http://dx.doi.org/10.1016/j.matlet.2012.03.035
  • MuzzarelliRAA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym2009; 77:1 - 9; http://dx.doi.org/10.1016/j.carbpol.2009.01.016
  • BoccacciniAR, KeimS, MaR, LiY, ZhitomirskyI. Electrophoretic deposition of biomaterials. J R Soc Interface2010; 7:Suppl 5S581 - 613; http://dx.doi.org/10.1098/rsif.2010.0156.focus; PMID: 20504802
  • BesraL, LiuM. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci2007; 52:1 - 61; http://dx.doi.org/10.1016/j.pmatsci.2006.07.001
  • SimchiA, PishbinF, BoccacciniAR. Electrophoretic deposition of chitosan. Mater Lett2009; 63:2253 - 6; http://dx.doi.org/10.1016/j.matlet.2009.07.046
  • RedepenningJ, VenkataramanG, ChenJ, StaffordN. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J Biomed Mater Res A2003; 66:411 - 6; http://dx.doi.org/10.1002/jbm.a.10571; PMID: 12889012
  • AltomareL, VisaiL, BloiseN, ArciolaCR, UliviL, CandianiG, CigadaA, ChiesaR, De NardoL. Electrochemically deposited gentamicin-loaded calcium phosphate coatings for bone tissue integration. Int J Artif Organs2012; 35:876 - 83; PMID: 23138703
  • ChenQ, Cordero-AriasL, RoetherJA, Cabanas-PoloS, VirtanenS, BoccacciniAR. Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. Surf Coat Tech2013; 233:49 - 56; http://dx.doi.org/10.1016/j.surfcoat.2013.01.042
  • PishbinF, SimchiA, RyanMP, BoccacciniAR. Electrophoretic deposition of chitosan/45S5 Bioglass (R) composite coatings for orthopaedic applications. Surf Coat Tech2011; 205:5260 - 8; http://dx.doi.org/10.1016/j.surfcoat.2011.05.026
  • PishbinF, SimchiA, RyanMP, BoccacciniAR. A study of the electrophoretic deposition of Bioglass (R) suspensions using the Taguchi experimental design approach. J Eur Ceram Soc2010; 30:2963 - 70; http://dx.doi.org/10.1016/j.jeurceramsoc.2010.03.004
  • LiY, PangX, EpandRF, ZhitomirskyI. Electrodeposition of chitosan-hemoglobin films. Mater Lett2011; 65:1463 - 5; http://dx.doi.org/10.1016/j.matlet.2011.02.038
  • SeussS, BoccacciniAR. Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromolecules2013; 14:3355 - 69; http://dx.doi.org/10.1021/bm401021b; PMID: 24001091
  • De Nardo L, Altomare L, Del Curto B, Cigada A, Draghi L. Electrochemical surface modifications of titanium and titanium alloys for biomedical applications. In: Driver M, ed. Coatings for Biomedical Applications: Woodhead Publishing, 2012:106-42.
  • BhattaraiN, GunnJ, ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev2010; 62:83 - 99; http://dx.doi.org/10.1016/j.addr.2009.07.019; PMID: 19799949
  • MiFL, TanYC, LiangHC, HuangRN, SungHW. In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed2001; 12:835 - 50; http://dx.doi.org/10.1163/156856201753113051; PMID: 11718480
  • JinJ, SongM, HourstonDJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules2004; 5:162 - 8; http://dx.doi.org/10.1021/bm034286m; PMID: 14715022
  • MiFL, SungHW, ShyuSS. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J Polym Sci2000; 38:2804 - 14; http://dx.doi.org/10.1002/1099-0518(20000801)38:15<2804::AID-POLA210>3.0.CO;2-Y
  • VieiraRS, BeppuMM. Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf A Physicochem Eng Asp2006; 279:196 - 207; http://dx.doi.org/10.1016/j.colsurfa.2006.01.026
  • WangG, LiuJ, WangX, XieZ, DengN. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater2009; 168:1053 - 8; http://dx.doi.org/10.1016/j.jhazmat.2009.02.157; PMID: 19342166
  • MiFL, ShyuSS, PengCK. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science2005; 43:1985 - 2000
  • LiuYH, CaoXH, HuaR, WangYQ, LiuYT, PangC, WangY. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy2010; 104:150 - 5; http://dx.doi.org/10.1016/j.hydromet.2010.05.009
  • CaoW, ChengM, AoQ, GongY, ZhaoN, ZhangX. Physical, mechanical and degradation properties, and schwann cell affinity of cross-linked chitosan films. J Biomater Sci Polym Ed2005; 16:791 - 807; http://dx.doi.org/10.1163/1568562053992496; PMID: 16028597
  • Tian JS, Cui YL, Yao KD. Ieee. A study on the fabrication of porous scaffold cross-linked with genipin. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Vols 1-11 2009:967-70.
  • Garnica-PalafoxIM, Sánchez-ArévaloFM, VelasquilloC, García-CarvajalZY, García-LópezJ, Ortega-SánchezC, IbarraC, Luna-BárcenasG, Solís-ArrietaL. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. J Biomater Sci Polym Ed2014; 25:32 - 50; http://dx.doi.org/10.1080/09205063.2013.833441; PMID: 24007370
  • WanY, CreberKAM, PeppleyB, BuiVT. Ionic conductivity and related properties of crosslinked chitosan membranes. J Appl Polym Sci2003; 89:306 - 17; http://dx.doi.org/10.1002/app.12090
  • KjmKM, SonJH, KimSK, WellerCL, HannaMA. Properties of chitosan films as a function of pH and solvent type. J Food Sci2006; 71:E119 - 24; http://dx.doi.org/10.1111/j.1365-2621.2006.tb15624.x
  • Gibson LJ, Ashby MF. Cellular Solids Structure and Properties. Cambridge Solid State Science Series, 1999.
  • AndrewsEW, GibsonLJ. The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Mater2001; 49:2975 - 9; http://dx.doi.org/10.1016/S1359-6454(01)00203-8
  • AnsethKS, BowmanCN, Brannon-PeppasL. Mechanical properties of hydrogels and their experimental determination. Biomaterials1996; 17:1647 - 57; http://dx.doi.org/10.1016/0142-9612(96)87644-7; PMID: 8866026
  • PauliukaiteR, GhicaME, Fatibello-FilhoO, BrettCMA. Comparative study of different cross-linking agents for the immobilization of functionalized carbon nanotubes within a chitosan film supported on a graphite-epoxy composite electrode. Anal Chem2009; 81:5364 - 72; http://dx.doi.org/10.1021/ac900464z; PMID: 19473012
  • ChangCY, ChenS, ZhangLN. Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem2011; 21:3865 - 71; http://dx.doi.org/10.1039/c0jm03075a