3,627
Views
55
CrossRef citations to date
0
Altmetric
Report

Magnetic force microscopy

Quantitative issues in biomaterials

, , , , , , , , , , , , , , & show all
Article: e29507 | Received 15 Jan 2014, Accepted 05 Jun 2014, Published online: 22 Jul 2014

References

  • ButtHJ, CappellaB, KapplM. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep2005; 59:1 - 152; http://dx.doi.org/10.1016/j.surfrep.2005.08.003
  • PasseriD, BettucciA, GermanoM, RossiM, AlippiA, SessaV, FioriA, TamburriE, TerranovaML. Local indentation modulus characterization of diamond-like carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique. Appl Phys Lett2006; 88:121910; http://dx.doi.org/10.1063/1.2188376
  • PasseriD, RossiM, TamburriE, TerranovaML. Mechanical characterization of polymeric thin films by atomic force microscopy based techniques. Anal Bioanal Chem2013; 405:1463 - 78; http://dx.doi.org/10.1007/s00216-012-6419-3; PMID: 23052864
  • GirardP. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology2001; 12:485 - 90; http://dx.doi.org/10.1088/0957-4484/12/4/321
  • CadenaMJ, MisiegoR, SmithKC, AvilaA, PipesB, ReifenbergerR, RamanA. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods. Nanotechnology2013; 24:135706; http://dx.doi.org/10.1088/0957-4484/24/13/135706; PMID: 23478510
  • JespersenTS, NygardJ. Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy. Appl Phys Lett2007; 90:183108; http://dx.doi.org/10.1063/1.2734920
  • FumagalliL, FerrariG, SampietroM, CasusoI, MartínezE, SamitierJ, GomilaG. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy. Nanotechnology2006; 17:4581 - 7; http://dx.doi.org/10.1088/0957-4484/17/18/009; PMID: 21727580
  • CasusoI, FumagalliL, GomilaG, PedrosE. Nondestructive thickness measurement of biological layers at the nanoscale by simultaneous topography and capacitance imaging. Appl Phys Lett2007; 91:063111; http://dx.doi.org/10.1063/1.2767979
  • PalermoV, PalmaM, SamorìP. Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv Mater2006; 18:145 - 64; http://dx.doi.org/10.1002/adma.200501394
  • GruvermanA, KalininSV. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci2006; 41:107 - 16; http://dx.doi.org/10.1007/s10853-005-5946-0
  • GruvermanA, AucielloO, TokumotoH. Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu Rev Mater Sci1998; 28:101 - 23; http://dx.doi.org/10.1146/annurev.matsci.28.1.101
  • ShinJ, RodriguezBJ, BaddorfAP, ThundatT, KarapetianE, KachanovM, GruvermanA, KalininSV. Simultaneous elastic and electromechanical imaging by scanning probe microscopy: theory and applications to ferroelectric and biological materials. J Vac Sci Technol B2005; 23:2102 - 8; http://dx.doi.org/10.1116/1.2052714
  • KalininSV, RodriguezBJ, JesseS, KarapetianE, MirmanB, EliseevEA, MorozovskaAN. Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu Rev Mater Res2007; 31:189 - 238; http://dx.doi.org/10.1146/annurev.matsci.37.052506.084323
  • HartmannU. Magnetic force microscopy. Annu Rev Mater Sci1999; 29:53 - 87; http://dx.doi.org/10.1146/annurev.matsci.29.1.53
  • VezenovDV, NoyA, AshbyP. Chemical force microscopy: probing chemical origin of interfacial forces and adhesion. J Adhes Sci Technol2005; 19:313 - 64; http://dx.doi.org/10.1163/1568561054352702
  • KienbergerF, EbnerA, GruberHJ, HinterdorferP. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res2006; 39:29 - 36; http://dx.doi.org/10.1021/ar050084m; PMID: 16411737
  • NoyA. Chemical force microscopy of chemical and biological interactions. Surf Interface Anal2006; 38:1429 - 41; http://dx.doi.org/10.1002/sia.2374
  • GmelinE, FischerR. Stitzinger r. Sub-micrometer thermal physics - an overview on SThM techniques. Thermochim Acta1998; 310:1 - 17; http://dx.doi.org/10.1016/S0040-6031(97)00379-1
  • MajumdarA. Scanning thermal microscopy. Annu Rev Mater Sci1999; 29:505 - 85; http://dx.doi.org/10.1146/annurev.matsci.29.1.505
  • ShiL, PlyasunovS, BachtoldA, McEuenPL, MajumdarA. Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes. Appl Phys Lett2009; 77:4295 - 7; http://dx.doi.org/10.1063/1.1334658
  • PasseriD, SassiU, BettucciA, TamburriE, ToschiF, OrlanducciS, TerranovaML, RossiM. Thermoacoustic emission from carbon nanotubes imaged by atomic force microscopy. Adv Funct Mater2012; 22:2956 - 63; http://dx.doi.org/10.1002/adfm.201200435
  • MartinY, WickramasingheHK. Magnetic imaging by “force microscopy” with 1000 ˚A resolution. Appl Phys Lett1987; 50:1455 - 7; http://dx.doi.org/10.1063/1.97800
  • SaenzJJ, GarciaN, GrutterP, MeyerE, HeinzelmannH, WiesendangerR, RosenthalerL, HidberHR, GuntherodtHJ. Observation of magnetic forces by the atomic force microscope. J Appl Phys1987; 62:4293 - 5; http://dx.doi.org/10.1063/1.339105
  • SaenzJJ, GarciaN, SloczewskiJC. Theory of magnetic imaging by force microscopy. Appl Phys Lett1988; 53:1449 - 51; http://dx.doi.org/10.1063/1.99965
  • de LozanneA. Application of magnetic force microscopy in nanomaterials characterization. Microsc Res Tech2006; 69:550 - 62; http://dx.doi.org/10.1002/jemt.20325; PMID: 16732543
  • Sarid D. Scanning Force Microscopy. Oxford University Press (New York, U.S.A.); 1994.
  • PorthunS, AbelmannL, LodderC. Magnetic force microscopy applied in magnetic data storage technology. J Magn Magn Mater1998; 182:238 - 73; http://dx.doi.org/10.1016/S0304-8853(97)01010-X
  • KoblischkaMR, HewenerB, HartmannU, WienssA, ChristofferB, Persch-SchuyG. Magnetic force microscopy applied in magnetic data storage technology. Appl Phys, A Mater Sci Process2003; 76:879 - 84; http://dx.doi.org/10.1007/s00339-002-1968-5
  • SchreiberS, SavlaM, PelekhovDV, IscruDF, SelcuC, HammelPC, AgarwalG. Magnetic force microscopy of superparamagnetic nanoparticles. Small2008; 4:270 - 8; http://dx.doi.org/10.1002/smll.200700116; PMID: 18247385
  • SieversS, BraunKF, EberbeckD, GustafssonS, OlssonE, SchumacherHW, SiegnerU. Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy. Small2012; 8:2675 - 9; http://dx.doi.org/10.1002/smll.201200420; PMID: 22730177
  • PasseriD, DongC, AngeloniL, PantanellaF, NataliziT, BerluttiF, MarianecciC, CiccarelloF, RossiM. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy. Ultramicroscopy2014; 136:96 - 106; http://dx.doi.org/10.1016/j.ultramic.2013.08.001; PMID: 24056281
  • MiyasakaM, NishideH. Magnetic force microscopy images of nanometer-sized, purely organic high-spin polyradical. Adv Funct Mater2003; 13:113 - 7; http://dx.doi.org/10.1002/adfm.200390016
  • FukuzakiE, NishideH. Room-temperature high-spin organic single molecule: nanometer-sized and hyperbranched poly[1,2,(4)-phenylenevinyleneanisylaminium]. [1,2,(4)-phenylenevinyleneanisylaminium]J Am Chem Soc2006; 128:996 - 1001; http://dx.doi.org/10.1021/ja0569611; PMID: 16417391
  • YanagiH, ManivannanA. Epitaxial growth of molecular magnetic thin films of lithium phthalocyanine. Thin Solid Films2001; 393:28 - 33; http://dx.doi.org/10.1016/S0040-6090(01)01088-4
  • CavalliniM, Gomez-SeguraJ, Ruiz-MolinaD, MassiM, AlbonettiC, RoviraC, VecianaJ, BiscariniF. Magnetic information storage on polymers by using patterned single-molecule magnets. Angew Chem Int Ed Engl2005; 44:888 - 92; http://dx.doi.org/10.1002/anie.200461554; PMID: 15669030
  • ZaidiNA, GiblinSR, TerryI, MonkmanAP. Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer (Guildf)2004; 45:5683 - 9; http://dx.doi.org/10.1016/j.polymer.2004.06.002
  • JaiswalMK, BanerjeeR, PradhanP, BahadurD. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces2010; 81:185 - 94; http://dx.doi.org/10.1016/j.colsurfb.2010.07.009; PMID: 20702074
  • NyamjavD, KinsellaJM, IvanisevicA. Magnetic wires with DNA cores: a magnetic force microscopy study. Appl Phys Lett2005; 86:093107; http://dx.doi.org/10.1063/1.1875748
  • HsiehCW, ZhengB, HsiehS. Ferritin protein imaging and detection by magnetic force microscopy. Chem Commun (Camb)2010; 46:1655 - 7; http://dx.doi.org/10.1039/b912338e; PMID: 20177606
  • MartinezRV, ChiesaM, GarciaR. Nanopatterning of ferritin molecules and the controlled size reduction of their magnetic cores. Small2011; 7:2914 - 20; http://dx.doi.org/10.1002/smll.201100366; PMID: 22102991
  • DietzC, HerruzoET, LozanoJR, GarciaR. Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology2011; 22:125708; http://dx.doi.org/10.1088/0957-4484/22/12/125708; PMID: 21325711
  • KimD, ChungNK, AllenS, TendlerSJB, ParkJW. Ferritin-based new magnetic force microscopic probe detecting 10 nm sized magnetic nanoparticles. ACS Nano2012; 6:241 - 8; http://dx.doi.org/10.1021/nn203464g; PMID: 22148318
  • HergtR, HiergeistR, ZeisbergerM, SchulerD, HeyenU, HilgerI, KaiserWA. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater2005; 293:80 - 6; http://dx.doi.org/10.1016/j.jmmm.2005.01.047
  • ProkschRB, SchafferTE, MoskowitzBM, DahlbergED, BazylinskiDA, FrankelRB. Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett1995; 66:2582 - 4; http://dx.doi.org/10.1063/1.113508
  • AlbrechtM, JankeV, SieversUS. Siegner, Schuler D, Heyen U. Scanning force microscopy study of biogenic nanoparticles for medical applications. J Magn Magn Mater2005; 290:269 - 71; http://dx.doi.org/10.1016/j.jmmm.2004.11.206
  • EberbeckD, JankeV, HartwigS, HeyenU, SchulerD, AlbrechtM, TrahmsL. Blocking of magnetic moments of magnetosomes measured by magnetorelaxometry and direct observation by magnetic force microscopy. J Magn Magn Mater2005; 289:70 - 3; http://dx.doi.org/10.1016/j.jmmm.2004.11.020
  • WeiJD, KnittelI, LangC, SchulerD, HartmannU. Magnetic properties of single biogenic magnetite nanoparticles. J Nanopart Res2011; 13:3345 - 52; http://dx.doi.org/10.1007/s11051-011-0357-4
  • GojzewskiH, MakowskiM, HashimA, KopcanskyP, TomoriZ, TimkoM. Magnetosomes on surface: an imaging study approach. Scanning2012; 34:159 - 69; http://dx.doi.org/10.1002/sca.20292; PMID: 21953296
  • DunnJR, FullerM, ZoegerJ, DobsonJ, HellerF, HammannJ, CaineE, MoskowitzBM. Magnetic material in the human hippocampus. Brain Res Bull1995; 36:149 - 53; http://dx.doi.org/10.1016/0361-9230(94)00182-Z; PMID: 7895092
  • DobsonJ. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett2001; 496:1 - 5; http://dx.doi.org/10.1016/S0014-5793(01)02386-9; PMID: 11343696
  • Grassi-SchultheissPP, HellerF, DobsonJ. Analysis of magnetic material in the human heart, spleen and liver. Biometals1997; 10:351 - 5; http://dx.doi.org/10.1023/A:1018340920329; PMID: 9353885
  • DobsonJ. Investigation of age-related variations in biogenic magnetite levels in the human hippocampus. Exp Brain Res2002; 144:122 - 6; PMID: 11976766
  • CollingwoodJ, DobsonJ. Mapping and characterization of iron compounds in Alzheimer’s tissue. J Alzheimers Dis2006; 10:215 - 22; PMID: 17119289
  • OberdörsterG, OberdörsterE, OberdörsterJ. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect2005; 113:823 - 39; http://dx.doi.org/10.1289/ehp.7339; PMID: 16002369
  • TassinariR, CubaddaF, MoracciG, AureliF, D’AmatoM, ValeriM, De BerardisB, RaggiA, MantovaniA, PasseriD, et al. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology2014; 8:654 - 62; http://dx.doi.org/10.3109/17435390.2013.822114; PMID: 23834344
  • AmemiyaY, TanakaT, YozaB, MatsunagaT. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol2005; 120:308 - 14; http://dx.doi.org/10.1016/j.jbiotec.2005.06.028; PMID: 16111780
  • MoskalenkoAV, YarovaPL, GordeevSN, SmirnovSV. Single protein molecule mapping with magnetic atomic force microscopy. Biophys J2010; 98:478 - 87; http://dx.doi.org/10.1016/j.bpj.2009.10.021; PMID: 20141762
  • ShenHB, LongDH, ZhuLZ, LiXY, DongYM, JiaNQ, ZhouHQ, XinX, SunY. Magnetic force microscopy analysis of apoptosis of HL-60 cells induced by complex of antisense oligonucleotides and magnetic nanoparticles. Biophys Chem2006; 122:1 - 4; http://dx.doi.org/10.1016/j.bpc.2006.01.003; PMID: 16500021
  • ZhangY, YangM, OzkanM, OzkanCS. Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake. Biotechnol Prog2009; 25:923 - 8; http://dx.doi.org/10.1002/btpr.215; PMID: 19562741
  • WangZ, CuschieriA. Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci2013; 14:9111 - 25; http://dx.doi.org/10.3390/ijms14059111; PMID: 23624604
  • UchidaM, KangS, ReichhardtC, HarlenK, DouglasT. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochim Biophys Acta2010; 1800:834 - 45; http://dx.doi.org/10.1016/j.bbagen.2009.12.005; PMID: 20026386
  • TaturJ, HagenWR, MatiasPM. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus.. J Biol Inorg Chem2007; 12:615 - 30; http://dx.doi.org/10.1007/s00775-007-0212-3; PMID: 17541801
  • Kanbak-AksuS, Nahid HasanM, HagenWR, HollmannF, SordiD, SheldonRA, ArendsIW. Ferritin-supported palladium nanoclusters: selective catalysts for aerobic oxidations in water. Chem Commun (Camb)2012; 48:5745 - 7; http://dx.doi.org/10.1039/c2cc31401k; PMID: 22552755
  • KasyutichO, IlariA, FiorilloA, TatchevD, HoellA, CeciP. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc2010; 132:3621 - 7; http://dx.doi.org/10.1021/ja910918b; PMID: 20170158
  • GalvezN, FernandezB, ValeroE, SanchezP, CuestaR, Dominguez-VeraJM. Apoferritin as a nanoreactor for preparing metallic nanoparticles. C R Chim2008; 11:1207 - 12; http://dx.doi.org/10.1016/j.crci.2008.09.003
  • Martínez-PérezMJ, de MiguelR, CarboneraC, Martínez-JúlvezM, LostaoA, PiquerC, Gómez-MorenoC, BartoloméJ, LuisF. Size-dependent properties of magnetoferritin. Nanotechnology2010; 21:465707; http://dx.doi.org/10.1088/0957-4484/21/46/465707; PMID: 20975213
  • San PauloA, GarciaR. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys Rev B2001; 64:193411; http://dx.doi.org/10.1103/PhysRevB.64.193411
  • San PauloA, GarciaR. Unifying theory of tapping-mode atomic-force microscopy. Phys Rev B2002; 66:041406; http://dx.doi.org/10.1103/PhysRevB.66.041406
  • GomezRD, PakAO, AndersonAJ, BurkeER, LeyendeckerAJ, MayergoyzID. Quantification of magnetic force microscopy images using combined electrostatic and magnetostatic imaging. J Appl Phys1998; 83:6226 - 8; http://dx.doi.org/10.1063/1.367638
  • NevesCS, QuaresmaP, BaptistaPV, CarvalhoPA, AraújoJP, PereiraE, EatonP. New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles. Nanotechnology2010; 21:305706; http://dx.doi.org/10.1088/0957-4484/21/30/305706; PMID: 20610872
  • JaafarM, Iglesias-FreireO, Serrano-RamónL, IbarraMR, de TeresaJM, AsenjoA. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination. Beilstein J Nanotechnol2011; 2:552 - 60; http://dx.doi.org/10.3762/bjnano.2.59; PMID: 22003461
  • RajeraR, NagpalK, SinghSK, MishraDN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull2011; 34:945 - 53; http://dx.doi.org/10.1248/bpb.34.945; PMID: 21719996
  • HadinotoK, SundaresanA, CheowWS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm2013; 85:3 Pt A427 - 43; http://dx.doi.org/10.1016/j.ejpb.2013.07.002; PMID: 23872180
  • AmstadE, ReimhultE. Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine (Lond)2012; 7:145 - 64; http://dx.doi.org/10.2217/nnm.11.167; PMID: 22191783
  • FuchigamiT, KitamotoY, NamikiY. Size-tunable drug-delivery capsules composed of a magnetic nanoshell. Biomatter2012; 2:313 - 20; http://dx.doi.org/10.4161/biom.22617; PMID: 23507895
  • HäberleT, HaeringF, PfeiferH, HanL, KuerbanjiangB, WiedwaldU, HerrU, KoslowskiB. Towards quantitative magnetic force microscopy: theory and experiment. New J Phys2012; 14:043044; http://dx.doi.org/10.1088/1367-2630/14/4/043044
  • PankhurstQA, ConnellyJ, JonesSK, DobsonJ. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys2003; 36:R167 - 81; http://dx.doi.org/10.1088/0022-3727/36/13/201
  • StellaB, ArpiccoS, PeracchiaMT, DesmaëleD, HoebekeJ, RenoirM, D’AngeloJ, CattelL, CouvreurP. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci2000; 89:1452 - 64; http://dx.doi.org/10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P; PMID: 11015690
  • ScaramuzzoFA, SalvatiR, PaciB, GenerosiA, Rossi-AlbertiniV, LatiniA, BarteriM. Nanoscale in situ morphological study of proteins immobilized on gold thin films. J Phys Chem B2009; 113:15895 - 9; http://dx.doi.org/10.1021/jp907149m; PMID: 19899801
  • WhitesidesGM, Christopher LoveJ. The art of building small. Sci Am2001; 285:38 - 47; http://dx.doi.org/10.1038/scientificamerican0901-38; PMID: 11524968
  • GoetzeT, GansauC, BuskeN, RoederM, GornertP, BahrM. Biocompatible magnetic core/shell nanoparticles. J Magn Magn Mater2002; 252:399 - 402; http://dx.doi.org/10.1016/S0304-8853(02)00624-8
  • BedantaS, KleemannW. Supermagnetism. J Phys D Appl Phys2009; 42:1 - 28; http://dx.doi.org/10.1088/0022-3727/42/1/013001
  • BatlleX, LabartaA. Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys2002; 35:15 - 42; http://dx.doi.org/10.1088/0022-3727/35/6/201
  • LoveJC, EstroffLA, KriebelJK, NuzzoRG, WhitesidesGM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev2005; 105:1103 - 69; http://dx.doi.org/10.1021/cr0300789; PMID: 15826011
  • ColettiD, ScaramuzzoFA, MontemiglioLC, PristeràA, TeodoriL, AdamoS, BarteriM. Culture of skeletal muscle cells in unprecedented proximity to a gold surface. J Biomed Mater Res A2009; 91:370 - 7; http://dx.doi.org/10.1002/jbm.a.32243; PMID: 18980225
  • JansenG, WesterhofGR, JarmuszewskiMJ, KathmannI, RijksenG, SchornagelJH. Methotrexate transport in variant human CCRF-CEM leukemia cells with elevated levels of the reduced folate carrier. Selective effect on carrier-mediated transport of physiological concentrations of reduced folates. J Biol Chem1990; 265:18272 - 7; PMID: 2211701
  • TamburriE, OrlanducciS, TerranovaML, ValentiniF, PalleschiG, CurulliA, BrunettiF, PasseriD, AlippiA, RossiM. Modulation of the electrical properties in single-walled carbon nanotube/conducting polymer composites. Carbon2005; 43:1213 - 21; http://dx.doi.org/10.1016/j.carbon.2004.12.014
  • SavlaM, PandianRP, KuppusamyP, AgarwalG. Magnetic force microscopy of an oxygen-sensing spin-probe. Isr J Chem2008; 48:33 - 8; http://dx.doi.org/10.1560/IJC.48.1.33
  • BraunKF, SieversS, AlbrechtM, SiegnerU, LandfesterK, HolzapfelV. Stability of the magnetic domain structure of nanoparticle thin films against external fields. J Magn Magn Mater2009; 321:3719 - 25; http://dx.doi.org/10.1016/j.jmmm.2009.07.023
  • PacificoJ, van LeeuwenYM, Spuch-CalvarM, Sánchez-IglesiasA, Rodríguez-LorenzoL, Pérez-JusteJ, Pastoriza-SantosI, Liz-MarzánLM. Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology2009; 20:095708; http://dx.doi.org/10.1088/0957-4484/20/9/095708; PMID: 19417504
  • Honarmand EbrahimiK, HagedoornPL, JongejanJA, HagenWR. Catalysis of iron core formation in Pyrococcus furiosus ferritin. J Biol Inorg Chem2009; 14:1265 - 74; http://dx.doi.org/10.1007/s00775-009-0571-z; PMID: 19623480
  • MarianecciC, RinaldiF, Di MarzioL, PozziD, CaraccioloG, MannoD, DiniL, PaolinoD, CeliaC, CarafaM. Interaction of pH-sensitive non-phospholipid liposomes with cellular mimetic membranes. Biomed Microdevices2013; 15:299 - 309; http://dx.doi.org/10.1007/s10544-012-9731-y; PMID: 23239124
  • MarianecciC, RinaldiF, IngallinaC, PasseriD, SorboA, RossiM, CarafaM. Smart magnetic nanovesicles for theranostic application: preparation and characterization. Nuovo Cimento C.2013; 36:103 - 10
  • KalyanasundaramK, ThomasJK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc1977; 99:2039 - 44; http://dx.doi.org/10.1021/ja00449a004
  • VanderkooiJM, CallisJB. Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes. Biochemistry1974; 13:4000 - 6; http://dx.doi.org/10.1021/bi00716a028; PMID: 4415409
  • ZachariasseKA. Intramolecular excimer formation with diarylalkanes as a microfluidity probe for sodium dodecyl sulphate micelles. Chem Phys Lett1978; 57:429 - 32; http://dx.doi.org/10.1016/0009-2614(78)85541-9
  • VasilescuM, BandulaR, LemmetyinenH. Micropolarity and microviscosity of Pluronic L62 and L64 core-shell aggregates in water at various concentrations and additives examined by absorption and fluorescence probes. Colloid Polym Sci2010; 288:1173 - 84; http://dx.doi.org/10.1007/s00396-010-2247-1
  • VasilescuM, AngelescuDG, BandulaR, StaikosG. Microstructure of polyelectrolyte nanoaggregates studied by fluorescence probe method. J Fluoresc2011; 21:2085 - 91; http://dx.doi.org/10.1007/s10895-011-0907-2; PMID: 21688051